
FNLP Tutorial 5

1 Lexical semantics

1. Consider the words “pie” (dish baked in pastry-lined pan often with a pastry top), “rela-
tionship” (human relationship), “universe” (everything that exists anywhere) and “garden”
(ground where plants are cultivated). At first glance, these words seem to have very little
in common. Use Wordnet (http://wordnetweb.princeton.edu/perl/webwn) to follow the
chain of hypernyms for these words, to figure out which one is the odd one out. Report the
chain of hypernyms and use them to motivate your answer. You follow the chain of hypernyms
by clicking ‘S’ next to a word sense, and looking at its ‘direct hypernym’.

Solution The four words lead to the following hypernym chains. The words “garden”, “pie”
and “universe” have in common that they are physical entities, while “relationship” is an
abstract entity. Therefore, “relationship” could be viewed as the odd one out.

(a) garden → plot, plot of land, plot of ground, patch → tract, piece of land, piece of ground,
parcel of land, parcel → geographical area, geographic area, geographical region, geo-
graphic region → region → object, physical object → physical entity → entity

(b) pie → pastry → baked goods → food, solid food → solid → matter → physical entity
→ entity

(c) relationship, human relationship → relation → abstraction, abstract entity → entity

(d) universe, existence, creation, world, cosmos, macrocosm → natural object → whole, unit
→ object, physical object → physical entity → entity

2. Describe the relationship between the following word pairs. Where there are multiple plausible
word senses for the relation, we disambiguate this. How far do you get with the main relation-
ships in WordNet (hyponym/hypernym, meronym, antonym)? Characterise the relationships
that are not covered by WordNet and give them a name; try to invent relationships that could
potentially be used for many other word pairs.

• bike - vehicle

• bike - sports

• book - novel

• book - library (a room where books are kept)

• fish (the flesh of fish used as food) - chips (a thin crisp slice of potato fried in deep fat)

• knife - drawer

• knife - cut

Solution Sample solution (there are other plausible ones!):

• bike - vehicle. Hyponymy: a bike is a vehicle

• bike - sports. Not captured by WordNet. Bikes are used for sports (among other things);
we introduce the “is-used-for” relation.

1

http://wordnetweb.princeton.edu/perl/webwn


• book - novel. Hypernymy: a novel is a certain type of book.

• book - library. Not captured by WordNet. Books can often be found in libraries; we
introduce the “can-be-found-in” relation.

• fish - chips. Not captured by WordNet. Fish and cheaps are often eaten together (“fish
and chips” is arguably one dish); we introduce the “are-often-eaten-together” relation.

• knife - drawer. Not captured by WordNet. Knives are often kept in drawers; we can
re-use the “can-be-found-in” relation.

• knife - cut. Not captured by WordNet. Knives can be used for making cuts, we can re-use
the “is-used-for” relation.

As you can see, there are many relationships that are not captured by WordNet that encode a
lot of world knowledge, which could be useful for drawing inferences in NLP applications. How-
ever, it would be an incredible effort to write down all “relevant” relations for all conceivable
applications.

2 Word vectors

Consider the following two-dimensional word vectors that encode animals. They are projections of
300-dimensional word vectors, that were trained using data from all over the web.

−→
dog=

[
1.9
2.07

]
,−−−−→puppy=

[
2.04
1.82

]
,
−−−−−→
puppies=

[
2.15
1.77

]
,
−→
cat=

[
1.63
1.87

]
−−−→
kitten=

[
1.68
1.76

]
,
−−−→
snake=

[
0.25
1.44

]
,
−−−−−→
monkey=

[
0.02
1.56

]
,
−−−−−→
monkeys=

[
−0.04
1.59

]

0.0 0.5 1.0 1.5 2.0 2.5
x

1.4

1.6

1.8

2.0

2.2

y

do
g

pu
pp

y

pu
pp

iescat

kit
ten

sna
kemon

key
mon

key
s

1. Visually inspect the word vectors. Distances in the vector space capture word similarities
(albeit strongly simplified when using only two dimensions). Why would ‘snake’ (a reptile) be
closer to ‘monkey’ (a mammal) compared to the remaining animals (that are also mammals)?
Please refer to the distributional hypothesis and the way word vectors are constructed in your
answer.

Solution According to the distributional hypothesis words that occur in similar contexts
tend to have similar meanings. This is reflected in the point in the vector space we associate
with a word: other points in its neighbourhood will occur in similar contexts. The contexts
come from the training corpus. For arbitrary content from the web concerning animals, we
expect pets like dogs and cats to appear in similar contexts. The same might hold for wildlife
like a monkey and a snake, but it seems less likely that a cat and a snake appear in similar
contexts.

The question suggests the vectors could have reflected the mammal vs. reptile difference, but
this difference is not as prominent from text as the very different habitats of pets and wildlife.

2



Were the vectors trained on a specialised corpus about biological evolution or the anatomy of
animals, they probably would reflect that difference more.

2. Word vectors can capture relationships between words, as discussed in J&M Section 6.10, 3rd
edition. An example of such a relationship is an analogy, such as Edinburgh is to Scotland
as Canberra is to . . . ? When we have word vectors, we can use the parallelogram method to

solve analogies: by subtracting
−−−−−−−→
edinburgh from

−−−−−→
scotland and adding

−−−−−−→
canberra. You would pick

the word for which the word vector has the smallest distance to the resulting vector. J&M
represent the procedure as follows for the analogy a:b::a*:b* (a is to b as a* is to b*):

−→
b ∗ = argmin distance−→x (

−→x ,
−→
b −−→a +−→a ∗) (1)

Using Euclidean distances, compute
−→
b ∗ for:

• −→a =
−→
dog,

−→
b = −−−−→puppy and −→a ∗ =

−→
cat

• −→a = −−−−→puppy,
−→
b =

−−−−−→
puppies and −→a ∗ =

−−−−−→
monkey

Solution

•
−→
b −−→a +−→a ∗ =

[
2.04
1.82

]
−
[
1.9
2.07

]
+

[
1.63
1.87

]
=

[
1.77
1.62

]
word distance

dog
√
(1.9− 1.77)2 + (2.07− 1.62)2 ≈ 0.47

puppy
√
(2.04− 1.77)2 + (1.82− 1.62)2 ≈ 0.34

puppies
√

(2.15− 1.77)2 + (1.77− 1.62)2 ≈ 0.41

cat
√

(1.63− 1.77)2 + (1.87− 1.62)2 ≈ 0.29

kitten
√

(1.68− 1.77)2 + (1.76− 1.62)2 ≈ 0.17

snake
√

(0.25− 1.77)2 + (1.44− 1.62)2 ≈ 1.53

monkey
√

(0.02− 1.77)2 + (1.56− 1.62)2 ≈ 1.75

monkeys
√

(−0.04− 1.77)2 + (1.59− 1.62)2 ≈ 1.81

The word vector for ‘kitten’ has the minimum distance, hence the vectors suggest
dog:puppy::cat:kitten, which makes perfect sense!

•
−→
b −−→a +−→a ∗ =

[
2.15
1.77

]
−
[
2.04
1.82

]
+

[
0.02
1.56

]
=

[
0.13
1.51

]
word distance

dog
√
(1.9− 0.13)2 + (2.07− 1.51)2 ≈ 1.85

puppy
√
(2.04− 0.13)2 + (1.82− 1.51)2 ≈ 1.93

puppies
√

(2.15− 0.13)2 + (1.77− 1.51)2 ≈ 2.04

cat
√

(1.63− 0.13)2 + (1.87− 1.51)2 ≈ 1.54

kitten
√

(1.68− 0.13)2 + (1.76− 1.51)2 ≈ 1.57

snake
√

(0.25− 0.13)2 + (1.44− 1.51)2 ≈ 0.14

monkey
√

(0.02− 0.13)2 + (1.56− 1.51)2 ≈ 0.12

monkeys
√

(−0.04− 0.13)2 + (1.59− 1.51)2 ≈ 0.19

Dependent on whether we exclude a, b and a* as potential answers or not, ‘monkey’ or

‘snake’ is closest, which, unfortunately, is not ‘monkeys’. The vector
−−−−−→
monkeys is close

to
−−−−−→
monkey in the vector space, but the relationship is not analogical to the one between−−−−−→

puppies and −−−−→puppy.

3



3. Retrieve the word that is the most similar to ‘monkey’ using cosine similarity, euclidean dis-
tance and the dot product. Where do the different metrics disagree, and how does this relate
to their definition?

Solution We collected the similarities below. For both the Euclidean distance and the
cosine similarity, the word most similar to ‘monkey’ is ‘monkeys’, but the dot product suggests
‘dog’ is the most similar to ‘monkey’. This is due to the impact of the vectors’ norm on the
computation of the dot product (Equation 2), since there is no length normalisation.

dot(u⃗, v⃗) =

d∑
i=1

u⃗iv⃗i (2)

word Euclidean dist. cosine dist. dot product
monkey 0.00 0.00 2.43
dog 1.95 0.25 3.27
puppy 2.04 0.32 2.88
puppies 2.14 0.35 2.80
cat 1.64 0.24 2.95
kitten 1.67 0.27 2.78
snake 0.26 0.01 2.25
monkeys 0.07 0.00 2.48

4. Explain how Euclidean distance, the dot product and the cosine similarity are related.

Solution The cosine similarity represents the cosine of the angle between two input vectors,
and is the dot product normalised by the norms of the two vectors (Equation 3). The relation
between the cosine similarity and the Euclidean distance may not be clear directly. After
all, two vectors in the same direction can be very distant as per the Euclidean distance, but
still very similar according to the cosine similarity. However, for normalised vectors, they
are related, as is illustrated in Equations 4 and 5. If u⃗ and v⃗ have length 1, ED(u⃗, v⃗)2 =
2− 2dot(u⃗, v⃗).

cosθu,v =
dot(u⃗, v⃗)

∥u⃗∥∥v⃗∥
(3)

ED(u⃗, v⃗) =

√√√√ d∑
i=1

(v⃗i − u⃗i)2 =

√√√√ d∑
i=1

(v⃗iv⃗i − 2v⃗iu⃗i + u⃗iu⃗i) =

√√√√ d∑
i=1

v⃗iv⃗i +

d∑
i=1

u⃗iu⃗i − 2

d∑
i=1

v⃗iu⃗i

(4)

ED(u⃗, v⃗)2 =

d∑
i=1

v⃗iv⃗i +

d∑
i=1

u⃗iu⃗i − 2

d∑
i=1

v⃗iu⃗i (5)

4



3 Feed-forward neural networks

Consider a two-layer neural network with the topology visualised below, with the corresponding
weights and bias values in the table. The hidden layer is followed by a non-linear function: the
ReLU. The output layer is followed by a non-linear function too: the softmax. Read up on those
functions and how to work with feedforward neural networks in sections 7.1 to 7.3 from J&M (only
available in the 3rd edition!).

The network can be used for simple classification for three output classes. An input (consisting
of features x1 and x2) belongs to one of the three classes, and you will classify an example input.

x1

x2

h1

h2

h3

y1

y2

y3

Input layer Hidden layer Output layer
wx1,h1 = 0.23 bh1 = 0.13 wh1,y1 = 0.02 by1 = 0.31
wx1,h2 = −2.90 bh2 = 0.90 wh1,y2 = −0.13 by2 = −0.18
wx1,h3 = −0.45 bh3 = 0.24 wh1,y3 = 0.47 by3 = −0.56
wx2,h1 = 1.10 wh2,y1 = −0.88
wx2,h2 = 0.05 wh2,y2 = 1.74
wx2,h3 = −0.01 wh2,y3 = −0.09

wh3,y1 = −0.55
wh3,y2 = 0.72
wh3,y3 = −2.22

1. Compute the class an input with x1 = 1.50, x2 = 3.11 would belong to. Show the intermediate
computations, not just the final class.

Solution Firstly, let’s compute the activation of the nodes in the hidden layers. This requires
combining the inputs with the weights, adding the bias, and applying the ReLU function:
ah1

= ReLU(1.50 · 0.23 + 3.11 · 1.10 + 0.13) = ReLU(3.896) = 3.896
ah2

= ReLU(1.50 · −2.90 + 3.11 · 0.05 + 0.90) = ReLU(−3.2945) = 0
ah3 = ReLU(1.50 · −0.45 + 3.11 · −0.01 + 0.24) = ReLU(−0.4661) = 0

Secondly, let’s compute the activation of the output nodes before computing the softmax.
We need all three outputs to be able to apply the softmax:
ay1

= 3.896 · 0.02 + 0 + 0 + 0.31 = 0.38792
ay2

= 3.896 · −0.13 + 0 + 0 +−0.18 = −0.68648
ay3 = 3.896 · 0.47 + 0 + 0 +−0.56 = 1.27112
Now, as a final step, we can apply the softmax to turn the outputs into probabilities:

p1 = exp(0.38792)
exp(0.38792)+exp(−0.68648)+exp(1.27112) ≈ 0.266

p2 = exp(−0.68648)
exp(0.38792)+exp(−0.68648)+exp(1.27112) ≈ 0.091

p3 = exp(1.27112)
exp(0.38792)+exp(−0.68648)+exp(1.27112) ≈ 0.643

This input is categorised with class 3!

2. Now imagine that you want to perform classification, but one input can belong to multiple
classes. For example, when classifying a sentence with an emotion, that sentence can capture
both anger and despair. To enable multi-class classification in this network, what adaptation
would you make to its structure or the non-linear functions it uses?

Solution A rather complicated solution would be creating output classes that represent
multiple classes. For example, for 3 output classes, we would create separate output nodes for
classes (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3). This is the wrong solution due to the
complexity it adds to the network.
The most straightforward solution is replacing the non-linear function of the output layer with
a sigmoid function, that computes a value between 0 and 1 for each class, and by thresholding
that value, one would know whether an input belongs to that class or not.

5


	Lexical semantics
	Word vectors
	Feed-forward neural networks

