Foundations for Natural Language Processing

Neural Classifiers

lvan Titov

with graphics / materials are from
Lena Voita and Edoardo Ponti

® School of

informatics

Neural models and word embeddings

__

Any algorithm for solving a task

..

Word representation - vector
(input for your model/algorithm)

%ﬂ}; Sequence of tokens

I saw a cat. Text (your input)

General Classification Pipeline

—_—

P(class = k|I liked...<eos>) -
get probability

. . . : d' t .b t.
Classification . istribution
method [] over classes
—
8 h: feature
o| representation

. of the text
process text
Feature extractor (document)

(e.g., hand-crafted
or neural network)

|

I liked the cat . <eo0s>| < Inputtext

This is a "end-of-sentence” token,
it will become soon clear why we
often should use it

X X X

<— h:featurerepresentation
of the text

Some manual
features (e.g., BOW)

[

I liked the cat <eos>

Note a slight change to notation from the previous lecture

w,: feature weights
for class k

Weigh features: take h O
.dr(]a'gc-product of 2 wy(0 00 0)-wyh(+by) O
with Teature weignts W3 wsh (+bsy) ©

for each class

XXX

<— h:featurerepresentation
of the text

Some manual
features (e.g., BOW)

[

I liked the cat <eos>

Note a slight change to notation from the previous lecture

w,: feature weights
for class k

Weigh features: take h O T
dof. prodycl off w,([890 0}~ w,h(+by) ©
with feature weights wi(@@ee)-wsh(+bsy) ©

for each class

XXX

<— h:featurerepresentation
of the text

Some manual
features (e.g., BOW)

[

I liked the cat <eos>

P(class=k|I liked..<eo0s>)

— P | T liked...<eo0s>)
E: P(class=2|1I liked..<eos>)
P(class=3 |1 liked...<eo0s>)

softmax:

(k) p,
P(class = k|h) = Ifxp(w)

> exp(w®h)
=1

Note a slight change to notation from the previous lecture

NN Classifier

get probability
distribution
over classes

process text
(document)

We will spend a lot of time

I

Classification with Neural Networks

K classes
P(class=k]|..)
d-sized Linear '] softmax ——
—

vector layer o J =

8 n:feature

o| representation

°] ofthetext

Neural Network

o) .
o <— Token embeddings
o

ol [0 |[o |o

T liked the cat . <e0s> <— [nputtext

0ee
©ee
000

0000
0000

discussing embeddings in this

lecture and also next week

Classification with Neural Networks

e K classes

get probability P(class =k] ...
distribution d-sized Linear 8 |softmax —
over classes vector layer Jo | —

h: feature
representation
of the text

I
(0000]

process text

(document) Neural Network

O ,
o <— [oken embeddings
o)

o (o |of [o |o

I liked the cat . <eos> <— [nputtext

[eXexexel
000
000
000
000

_—

The highlighted part is the logistic regression!

K classes
P(class=k| ...)
d-sized | |Linear|© |softmax —— | P(| I liked..<eo0s>)
vector I layer 8 ' ' :I:| P(class=2|T liked...<eos>)
‘ P(class=3|1I liked...<eos>)
: feature 8 - . o3 ;
representation = Thisis Logistic Regression!
of the text s

Neural Network

0000
[0 0O0]
[0000]
[0000]
[000 0]
[00O0]

I liked the cat . <eos>

X XX

w,: feature weights

for class k
. softmax [1
W3 wyh(+by) @ | -

w3 (@00 0]~ wsh(+bs) ©.

Weigh features: take dot-
product of h with feature
weights for each class

K classes

P(class=k|..)
d-sized | |[Linear]© |softmax —— P(| T liked...<eo0s>)
vector | || laver 1| P(class=2|T liked..<e0s>)
verle - P(class=3|1I liked...<eos>)
: feature 8 This is Logistic R]
of the text 2

Neural Network

0000
[0 0O0]
[0000]
[0000]
[000 0]
[00O0]

nputiext T liked the cat . <eos>

X XX

w,: feature weights

for class k
(+by) © ‘softmax I—
"

w; (000 0)-wyhi(+by © |
W 888}~ wsh (+by) ©.

Weigh features: take dot-
product of h with feature
weights for each class

Intuition: the representation of the document points in the
direction of the class representation

vectors Wy, W, W3

T ¢
o Linear s ! lole -
@) @] o|e|e :
o) O olo|e b3
h -vector N1, Wo, W3 - vector
representation of representations of
the input text classes

Intuition: the representation of the document points in the
direction of the class representation

8} for texts of
OoJclasses 1, 2,3

Optimize conditional log-likelihood, as with logistic regression, which is
equivalent to using cross-entropy loss

Training example: I liked the cat on the mat <eos> Label: k
target

Model prediction: Target: Cross-entropy loss:

P(class =1]|I liked...<eos>) P’

K
—pr-logP(y= ilx) >min (p = 1L,p; =0,i # k)

0
<« k — [1] J=1
0
0
0

W

]

I:I

For one-hot targets, this is equivalent to

—

—log P(y = k|x) » min

The target distribution is one-hot:

p*=(0,...,0,1,0,...)

Recall: we derived the gradient in the previous lecture

What do we optimize!

Optimize conditional log-likelihood, as with logistic regression

Feed a text to the
Neural Network network

I liked the cat . <eos>
we want the model
to predict this

Correct label: 4 <—

(video, not visible in pdf)

d-sized vector Kclasses

P(class=k]| ...
n:vector o
i O |softmax
representation — |3 I_I|near ©] g =
of the text o ayer o |]

Neural Network | <— Whatis here?

I liked the cat . <eos>

000

0000
000
[CXICKO)
000

(CXONCKO)

Most basic computational unit.
The input x € R? is a vector with d dimensions.
The output z € R. This means that we have d inputs and 1 output.

The output is obtained as:

d
z:Zwixi—l—b:wa—l—b

i=1

w € R? are called the weights: they multiply each dimension of
the input by its ‘importance’.

b € R is called the bias and provides an additive shift.

Neurons with weights only index functions passing via the origin.

The bias allows for modelling the set of affine functions, which is a
superset of linear functions.

A

affine subspace

linear subspace

e
o -

Identity (results in a linear model, can perform regression):
y=[f(x)=a(z) =2

Sigmoid (results in a log-linear model, can perform logistic
regression / binary classification):

y= () = a(z) = 0() =

y € [0,1]. To see why:
lim, ,o0(2) =1

lim; » s @lz) =0

Visualization of a neuron

From J&M3, §7.1

The full neural network is y = 1+e_(w1x11+w2$2+b) If we set w = (0, 2):

From MacKay, §39.2

Each choice of w (a point in w € ©) indexes a function from the
space f(-): X —).

Parameter space

From MacKay, §39.2

Word embeddings are a parameter matrix £ € R¥*V| (with as
many columns as words in the vocabulary)

For any word, we can fetch the corresponding column in E to obtain
its representation.

As a pre-processing step, we encode each x €)V as a distinct
one-hot vector one-hot(x). E.g., for V = {all, happy, families}:

e one-hot(all) = [1,0,0]
e one-hot(happy) = [0, 1, 0]

e one-hot(families) = [0,0, 1]

During training and inference, any word in a context can be
embedded via matrix-vector multiplication.

E.g., for the word with 1 in its 5th dimension of the one-hot vector:

V] 1 1

d E X 5 = dH
3 \4

€5

So enc(z) = E one-hot(x)

To construct the representation of a document length n — 1, we
could just concatenate the encodings of the corresponding words:

enc(xy,...,T,) =enc(zy)o---oenc(xy,).
So enc(zy,...,z,) € R0

This may not be a great idea as the document length can be very
long and the number of words varies across documents

So not really what we do for classification (but this architecture will
make much more sense what we will get to ‘language modeling’, i.e.
predicting next word).

Sum of embeddings
(Bag of Words, Bag of Embeddings)

<— h:vector representation of the input text

O
O
O
O

: Token embeddings

I liked the cat . <eos> <«— Inputtext

We will see much more power methods soon

The neuron returns a scalar output,
e real (if linear);
e orin [0,1] (if log-linear).

Instead, to yield a Categorical distribution over classes, we will
need:

e to output multiple units (the number of classes K)

e to choose an activation which ensures that the output is a valid
probability (sums to 1).

To create multivariate outputs, we can join multiple neurons, by
concatenating their weight vector and bias scalar row-wise. Hence,
W = [Wl, o aW|IC|]-

Each entry W;; (i-th row and j-th column) is the importance of the
connection between the i-th output unit to the j-th input unit.

The number of output units is the width of the perceptron.

d
f(x) = a(z) = a(Wx +b) = a(D)_ Wi;x; + b;)

=T
Thus, z € RE, W € RKd("=1) and b € REX

This architecture is known as the perceptron.

bl

A choice of a(z) that will ‘squash’ the scores of z into the range
[0,1] and normalise them to sum to 1 (thus, yielding a Categorical
distribution) is softmax.

exp(z;)

Zf:l exp(z;)

f(x); = softmax(z) =

for the i-th output dimension.
(Can be thought of as a multivariate generalisation of sigmoid)

Putting everything together, we have constructed a basic bag-of-
word classifier:

p(class | z1...xz,) = softmax (W >, enc(z;) + b)

Schematic representation

K classes
P(class=k] ...

d-sized Linear 8 “|SOftma>£ —
>
vector layer o _J =

I liked the cat . <eos>

Yet, there exists a class of problems that perceptrons cannot solve.!

Historically, the first such problem connected to limitations of
perceptrons is the XOR operator (Minsky and Papert 1969).

Consider the truth tables for various logical operators :

AND OR XOR
rr X2 2| X1 T2 2| X1 T2 <
o 0 0,0 O OO0 O O
o 1 0,0 1 1|0 1 1
1 0 01 0 1|1 0 1
1 1 1|1 1 1({1 1 O

!In the input space, but they can if extra features like z; - =5 are added.

%2
1 O
?
0
X
0 | :
a) x; AND x, b) x; OR x, c¢) x; XOR x,

For a threshold 7, we can draw a decision boundary, i.e., y =1 if
wiT1 + wexo + b > T, else y = 0.

This boundary is a line: x5 = (—wy/we)x1 + (—b/ws3) + 7/wo

How to make neural networks more expressive, i.e., capable of
indexing non-linear functions? Recipe:

1. stack perceptrons (layers)
2. use non-linear activations at the end of each layer

The resulting non-linear model is a multi-layer perceptron (MLP)!

Perceptrons can be stacked. We refer to their ordered sequence as
layers.

This creates feedforward networks, so that the output of layer [
is passed as input to the next layer [+ 1,? but not to the previous
ones 1,...,[—1.

In addition, this family of neural networks is fully connected,
meaning that for each layer, each output unit is the weighted sum
of all the input units.

The number of layers is the depth of the network (hence, the term
deep learning!)

2Optionally, it can be passed also to any subsequent layer I + 1, ..., L (skip connection).

The output z is passed through a non-linear function a(-), which
gives us the hidden representation h € R" of intermediate layers.

Any differentiable® non-linear function can be chosen. A common
choice is ReLU (others are sigmoid, tanh, ...):
ReLU(z) £ max(0,)

A

Note: without non-linearities, a multi-layer network remains linear!

3We will see later why this is requirement for training the model

__

Linear

T

RelLU
1

. [oooo0 000

FFN(x) = max(0,zW7 + b1)W3 + by

1 @ O 1 O
0 O o—, 0 O @ -
1 P . h
0 1 0 .- 1 2 1
a) The original x space b) The new (linearly separable) 4 space

From J&M3, §7.3

Key idea: space folding! h is linearly separable in the next layer.

But we already recognize perhaps
half of their components

Output
Probabilities

Feed-forward network:
after taking information from
other tokens, take a moment to
think and process this information

Residual connections
and layer normalizatjon _
: \

\ p 5

\ \\ T Feed 4 T
; \ . Forward
Feed-forward network: - N e — . -
after taking information from — Add & Norm / ecoder-encoder attention:
Ol .
other tokens, take a moment to ——— Muli-Head | 1 target token looks at the source
think and process this information V| Foward e Nx queries - from decoder states; keys
T b 1 and values from encoder states
‘ Add & Norm
Nx | (AdTsrom . T
Encoder self-attention: —_| Masked
B Multi-Head Multi-Head - i :
tokens look at each other | Attention Attention Decoder self attent'oh (masked):
) [\ 7 x 7 tokens look at the previous tokens
qatieerclgir,]keuxgd\/?rlgrens R SR - queries, keys, values are computed
b Positional ® @ Positional from decoder states
encoder states Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Text classification with neural networks

* Generalization of logistic regression

* Concept of word embeddings (will see and understand them much
more later)

* Bag-of-word models for classification

Neural networks:
* NNs are built out of neurons, a function from many input

dimensions to one output dimension.

* A multi-layer perceptron stacks multiple layers, each consisting of
multiple units and with a non-linear activation.

* Each layer captures useful features for the next layers.

