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1 (thus, yielding a Categorical
distribution)
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descent

w < Random()

repeat
B <+ RandomSubset([1,..., N])

W 4— W+ 1 Vy Z log P(y\)|z\9))
jeB

until Converged() \l
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If the classifier is already confident, gradient is close to 0
and no learning is happening




Naive Bayes can also be interpreted as a linear classifier, as decision
boundaries are linear when expressed in terms of log-probabilities of
the features.
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If the features were truly conditionally independent (a condition that
rarely holds in practice), NB would converge to the same decision
boundary as LR, given enough training data.*

* i.e. models’ predictions will be the same but not necessarily the weights
corresponding to individual features are the same



Bias (scalar) for each class, makes it easier to encode
class priors (no need for f3= 1 from NB example)
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Data efficiency of LR vs NB

Theoretical results: generative classifiers converge faster with training set size to
their optimal error [Ng & Jordan, NeurlPS 2001]

Empirical:
voling records (discrate)

Predicting Democrat 00
vs Republican, based
on voting records

20 40 80 80
m
# train examples



— Supervised MLE in generative models is easy: compute counts
and normalize.
— Supervised CMLE in LR model not so easy
* requires multiple iterations over the data to gradually improve
weights (using gradient ascent).

x each iteration computes P(y\/)|z()) for all .

x this can be time-consuming, especially if there are a large
number of classes and/or thousands of features to extract from
each training example.



— Imagine that in training there is one very frequent predictive
feature
x E.g., In training sentiment data contained emoticons but not at
test time
— The model can quickly learn to rely on this feature
x model is confident on examples with emoticons
x the gradient on these examples gets close to zero
* the model does not learn other features



— In LR, a feature weight will depend on the presence of other
predictive features
— Naive Bayes will rely on all features
x The weight of a feature is not affected by how predictive other
features are
— This makes NB more robust that (basic) Logistic Regression when
test data is (distributionally) different from train data



Plan for today

 Basic neural network classifiers



Neural models and word embeddings

__________________________________________

Your algorithm
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__________________________________________
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I saw ac%“l'T. Sequence of tokens
S~—— S A

I saw a cat. Text (your input)
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Classification with Neural Networks
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The highlighted part is the logistic regression!
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Intuition: the representation of the document points in the
direction of the class representation
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Optimize conditional log-likelihood, as with logistic regression, which is
equivalent to using cross-entropy loss

Training example: I liked the cat on the mat <eos> Label: k
target

Model prediction: Target: Cross-entropy loss:

P(class =11|T liked..<eo0s>) p’

K
0 =Y pi-logP(y=ilx) > min (i = Lp{ = 0,i # k)
— «— k —> @l =
0
0

For one-hot targets, this is equivalent to

—log P(y = k|x) » min

The target distribution is one-hot:

p*=(0,...,0,1,0,...)

Recall: we derived the gradient in the previous lecture



Optimize conditional log-likelihood, as with logistic regression

Neural Network

I liked the cat . <eos>

Correct label: 4 <— we want the o Recall, we derived last
' topreqict time that gradient
updates to results in
these decreases /

(video, not visible in pdf) .
INncreases
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Most basic computational unit.
The input x € R? is a vector with d dimensions.
The output z € R. This means that we have d inputs and 1 output.

The output is obtained as:

d
ZZZ’w,;.’Ei—i—b:WTX—l—b

=1

w € R? are called the weights: they multiply each dimension of
the input by its ‘importance’.

b € R is called the bias and provides an additive shift.



Neurons with weights only index functions passing via the origin.

The bias allows for modelling the set of affine functions, which is a
superset of linear functions.

A

affine subspace

linear subspace

ey
o -




Visualization of a neuron

Activation function (some times
we call it just non-linearity)

From J&M3, §7.1



Identity (results in a linear model, can perform regression):
y=[f(x)=a(z) =2

Sigmoid (results in a log-linear model, can perform logistic
regression / binary classification):

1
1+e %2

y=f(x)=a(z) =0(2) =

Softmax with 2 classes is equivalent to sigmoid (a small
exercise: check that this is true; first it may seem to you
that softmax has more parameters)




y € [0,1]. To see why:
lim, ;o 0(2) =1

lim, , o 0(z)=0




1 — 0
o (une, FugepTh) If we set w = (0, 2):

The full neural network is y =

0-5'_ | |I | |
RN
" 10

From MacKay, §39.2

Each choice of w (a point in w € ©) indexes a function from the

space f(:): X = ).



Parameter space

From MacKay, §39.2
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Word embeddings are a parameter matrix £ € R**V| (with as
many columns as words in the vocabulary)

For any word, we can fetch the corresponding column in £ to obtain
its representation.

As a pre-processing step, we encode each x € )V as a distinct
one-hot vector one-hot(z). E.g., for V = {all, happy, families}:

e one-hot(all) = [1,0,0]
e one-hot(happy) = [0, 1, 0]

e one-hot(families) = [0,0, 1]



During training and inference, any word in a context can be
embedded via matrix-vector multiplication.

E.g., for the word with 1 in its 5th dimension of the one-hot vector:

\% 1 1

d E X 5 = dH
3 VI

€5

So enc(z) = E one-hot(x)



To construct the representation of a document length n—1, we could just
concatenate the encodings (aka embeddings) of the corresponding
words:

enc(xy,...,x,) =enc(xri)o---oenc(zy,).

So enc(z1, ..., x,) € R

This may not be a great idea as the document length can be very long
and the number of words varies across documents.

So not really what we do for classification (but this architecture will
make much more sense when we get to 'language modelling, i.e.,
predicting next word).



Sum of embeddings
(Bag of Words, Bag of Embeddings)

:vector representation of the input text

o
o
o
o

: Token embeddings

T liked the cat . <e0s> <«— [nputtext

We will see much more powerful approaches soon




Schematic representation
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Neural networks consisting of a linear layer (or multiple linear layers without non-
linear activations in between) is called perceptron.

The networks on the previous slide is a perceptron (though not a general one, due
to the summation in the first layer).

Logistic regression is (effectively) a perceptron.?

'when we talk about LR, we imply the specific training objective (cross entropy), whereas
“perceptron” may also refer to the same linear mode trained with a different training algorithm

/ using different loss (perceptron algorithm)



Yet, there exists a class of problems that perceptrons cannot solve.!

Historically, the first such problem connected to limitations of
perceptrons is the XOR operator (Minsky and Papert 1969).

Consider the truth tables for various logical operators :

AND OR XOR
i 9 < | L1 T2 < | L1 T2 2
o 0 00 O O0y0 O O
o 1 0j]0 1 10 1 1
1 0 0;j1 0 1}1 0 1
1 1 11 1 1|1 1 O

YIn the input space, but they can if extra features like z; - 25 are added.



)
1 O
?
0 X,
0 1
a) x; AND x, b) x; OR xy ¢) x; XOR x5

For a threshold 7, we can draw a decision boundary, i.e., y =1 if
w1T1 + wexo + b > 7, else y = 0.

This boundary is a line: zo = (—w1/ws)x1 + (—b/ws) + 7/wo



How to make neural networks more expressive, i.e., capable of
indexing non-linear functions? Recipe:

1. stack perceptrons (layers)
2. use non-linear activations at the end of each layer

The resulting non-linear model is a multi-layer perceptron (MLP)!



Perceptrons can be stacked. We refer to their ordered sequence as
layers.

This creates feedforward networks, so that the output of layer [
is passed as input to the next layer [ + 1,% but not to the previous
ones 1,...,[—1.

In addition, this family of neural networks is fully connected,
meaning that for each layer, each output unit is the weighted sum
of all the input units.

The number of layers is the depth of the network (hence, the term
deep learning!)

Optionally, it can be passed also to any subsequent layer [ + 1, ..., L (skip connection).



The output z is passed through

a non-linear function a(-), which

gives us the hidden representation h € R" of intermediate layers.

Any differentiable3 non-linear function can be chosen. A common
choice is ReLU (others are sigmoid, tanh, ... ):

ReLU(z) £ max(0, z)

A

A

Note: without non-linearities, a

multi-layer network remains linear!

SWe will see later why this is requirement for training the model
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b) The new (linearly separable) 4 space

From J&M3, §7.3

Key idea: space folding! h is linearly separable in the next layer.




But we already recognize perhaps

half of their components

Residual connections
and layer normalizatjon
\

\ ~ =
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Output
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Input Output
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(shifted right)

Feed-forward network:
after taking information from
other tokens, take a moment to
think and process this information

f

Decoder-encoder attention:

/ target token looks at the source

queries - from decoder states; keys
and values from encoder states

f

Decoder self-attention (masked):
tokens look at the previous tokens

queries, keys, values are computed
from decoder states



Text classification with neural networks

* Generalization of logistic regression

* Concept of word embeddings (will see and understand them
much more later)

* Bag-of-word models for classification

Neural networks:

* NNs are built out of neurons, a function from many input
dimensions to one output dimension.

* A multi-layer perceptron stacks multiple layers, each consisting
of multiple units and with a non-linear activation.

* Each layer captures useful features for the next layers.
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