Foundations for Natural Language Processing

Neural Classifiers

lvan Titov

with some graphics / materials
from Lena Voita and Edoardo Ponti

® School of
informatics

* Discuss relation between logistics regression and
Naive Bayes
* Basic neural text classifiers

General Classification Pipeline

_—

P(class =k|I liked...<eos>)

Classification
method

8 h: feature
o| representation
@]

of the text

Feature extractor
(e.g., hand-crafted
or neural network)

!

I liked the cat . <eos>

This is a "end-of-sentence” token,
it will become soon clear why we
often should use it

get probability
distribution
over classes

process text
(document)

<—— h:featurerepresentation
of the text

O0COO0

Some manual
features (e.g., BOW)

[

I liked the cat <eos>

w,: feature weights

for class k
Weigh features: take (ecoo] h o
.d ot-product Qf h wy(0 00 0)-wyh(+b,y O
with feature weights wi(@@eoe)-wsh(+by) ©

for each class

O0O0O0

<—— h:featurerepresentation
of the text

Some manual
features (e.g., BOW)

|
I liked the cat <eos>

w,: feature weights .
K e kg P(class=k| I liked...<eo0s>)

Weigh features: take h O coftmax — P | T liked...<eos>)

dot-productof h wy(0c000])-w,h(+by O = P(class=2|T liked..<eo0s>)

with feature weights wi(@eoee)-wsh(+by) © P(class=3|1I liked...<eos>)
for each class

O0O0O0

<—— h:featurerepresentation
of the text

Some manual
features (e.g., BOW)

|
I liked the cat <eos>

w,: feature weights
for class k

Weigh features: take
dot-product of h
with feature weights
for each class

w8800} wyh (+by) ©
wi(8890) - wsh(+by) ©

<—— h:feature representation
of the text

O0O0O0

Some manual
features (e.g., BOW)

|
I liked the cat <eos>

h © softmax

P(class=k|I liked...<e0s>)

—1 P(| T liked...<eo0s>)
:||:' P(class=2|I liked...<eo0s>)
P(class=3 1T liked...<eos>)

Softmax squashes a vector of
scores z into the range [0, 1]
and normalizes them to sum to
1 (thus, yielding a Categorical
distribution)

exp(zi)

E;fil exp(z;)

softmax(z) =

for the i-th output dimension

descent

w < Random()

repeat
B <+ RandomSubset([1,..., N])

W 4— W+ 1 Vy Z log P(y\)|z\9))
jeB

until Converged() \l

d
dwl(k)

log Py)27y = (1) — (1I)

— [y(j

)= k] -
= ([y) =k

fl(x(j)) — Py = k|aj(j)) : fl(x(j))
=

Py = k|lz)) fi(z)

«

Close to zero if the classifier confidently predicts the

correct class ,
1 if y¥ =k

Py = klz\9) ~
y ’) {0 otherwise
\ 4

If the classifier is already confident, gradient is close to 0
and no learning is happening

Naive Bayes can also be interpreted as a linear classifier, as decision
boundaries are linear when expressed in terms of log-probabilities of
the features.

fi:

fa:

f3:

contains(‘ski’)

contains(‘beach’)

()
()._
()

()
()
(@._

o
w® —
w® —

P(‘ski’le=1)
P(‘ski’|c = 2)
P(‘ski’|c = 3)
P(‘beach’|c = 1)
P(‘beach’|c = 2)
P(‘beach’|c = 3)
(c=1)
(¢ =2)
(c=

3)

log
log
log
log
log
log
log
log
log

N N N

If the features were truly conditionally independent (a condition that
rarely holds in practice), NB would converge to the same decision
boundary as LR, given enough training data.*

* i.e. models’ predictions will be the same but not necessarily the weights
corresponding to individual features are the same

Bias (scalar) for each class, makes it easier to encode
class priors (no need for f3= 1 from NB example)

Vectors for ~ Scores fo Probability

distribution over
each class each clags
) classes
000 Q0> | (+ |) O softmax [
w([Ee0a)—s v - [(+42) © m—
uEeee}—s v /() ©

Feature representation
of text

I
Some manual features
(e.g., bag of words)

1

| like the cat <eos> Input text

Data efficiency of LR vs NB

Theoretical results: generative classifiers converge faster with training set size to
their optimal error [Ng & Jordan, NeurlPS 2001]

Empirical:
voling records (discrate)

Predicting Democrat 00
vs Republican, based
on voting records

20 40 80 80
m
train examples

— Supervised MLE in generative models is easy: compute counts
and normalize.
— Supervised CMLE in LR model not so easy
* requires multiple iterations over the data to gradually improve
weights (using gradient ascent).

x each iteration computes P(y\/)|z()) for all .

x this can be time-consuming, especially if there are a large
number of classes and/or thousands of features to extract from
each training example.

— Imagine that in training there is one very frequent predictive
feature
x E.g., In training sentiment data contained emoticons but not at
test time
— The model can quickly learn to rely on this feature
x model is confident on examples with emoticons
x the gradient on these examples gets close to zero
* the model does not learn other features

— In LR, a feature weight will depend on the presence of other
predictive features
— Naive Bayes will rely on all features
x The weight of a feature is not affected by how predictive other
features are
— This makes NB more robust that (basic) Logistic Regression when
test data is (distributionally) different from train data

Plan for today

 Basic neural network classifiers

Neural models and word embeddings

__

Your algorithm
' (e.g., neural network)

__

Any algorithm for solving a task

1

1

1

1

1

i
.

Word representation - vector
(input for your model/algorithm)

I saw ac%“l'T. Sequence of tokens
S~—— S A

I saw a cat. Text (your input)

get probability
distribution
over classes

process text
(document)

We will spend a lot of time

e

Classification with Neural Networks

K classes
l P(class =k]| ...)
d-sized Linear 8]Softmax —
—

vector layer Jo J —

8 n:feature

0| representation

°] ofthetext

Neural Network

<— Token embeddings

[OC0O]
[00 QO]
[O0 QO]
[O00O0]
[O00O0]
[00 0 0]

I liked the cat . <eos> <— |[nputiext

discussing embeddings in future

lectures

Classification with Neural Networks

. K classes

get probability P(class =k] ..)
distribution d-sized Linear 8 |softmax —
over classes vector layer |o J Efj__J

: feature
representation
of the text

I
(0000]

process text

(document) Neural Network

! ‘! I I

I liked the cat . <eos> <— |[nputiext

<— Token embeddings

[O0OO]
000
000

0000

0000

0000

]

The highlighted part is the logistic regression!

K classes
P(class=k]| ..)
d-sized | |Linear]© |softmax —— P(| T liked...<e0s>)
vector [| layer 8 — 1 | Plclass =21 liked..<e0s>)
P(class=3| T liked...<eos>)
: feature 8 This is | ogistic R . |
representation = IS 1S LOgIStIC Regression!
of the text ©

Neural Network

0000
[000 O]
(000 0]
[00O0]
(000 0]
[SISIsIe]

T liked the cat . <eos>

w,: feature weights
for class k

S
Wy wyh (+by) ©
W3 wsh (+bs) ©

softmax

Weigh features: take dot-
product of h with feature
weights for each class

Q00O

[
—
c

K classes
P(class=k]| ..)
d-sized | |Linear]© |softmax —— P(| T liked...<eo0s>)
vector [| layer 8 — 1 | Pclass=2]TI liked..<e0s>)
P(class=3 |1 liked...<eos>)
: feature 8 . o .
representation o This is Logistic Regression!
of the text ©
w,: feature weights
for class k
Neural Network
© softmax
w, (000 0)-wyN(+by ©
o lo| lo] [0 [o [o w-[0000]+~Ww bs;) ©
- L ;(@000)-ws 3
ol lo| lo|l lof [o |o o _
oS 1 19 [@ [© ol Weigh features: take dot-
o

T liked the cat . <eos>

product of h with feature
weights for each class

[
—
c

Intuition: the representation of the document points in the
direction of the class representation

il

Matrix W and vector b
are the parameters of
the linear layer

oT o)
ol |Linear| 0060
olX aver | - cooo] X |o| + |b,
0000
@] 9) b3
, W>, W5 - vector - vector

representations of representation of
classes the input text

Matrix W and vector b
are the parameters of
the linear layer

oT o
ol [Linear]| SESESES
o[X | : cooo] X 8 + | b,
o ayer 0000 o ba
, W>, W3 - vector - vector
representations of representation of
classes the input text

Intuition: the representation of the document points in the
direction of the class representation

O] for texts of
OJclasses 1, 2,3 olws| 8

Optimize conditional log-likelihood, as with logistic regression, which is
equivalent to using cross-entropy loss

Training example: I liked the cat on the mat <eos> Label: k
target

Model prediction: Target: Cross-entropy loss:

P(class =11|T liked..<eo0s>) p’

K
0 =Y pi-logP(y=ilx) > min (i = Lp{ = 0,i # k)
— «— k —> @l =
0
0

For one-hot targets, this is equivalent to

—log P(y = k|x) » min

The target distribution is one-hot:

p*=(0,...,0,1,0,...)

Recall: we derived the gradient in the previous lecture

Optimize conditional log-likelihood, as with logistic regression

Neural Network

I liked the cat . <eos>

Correct label: 4 <— we want the o Recall, we derived last
' topreqict time that gradient
updates to results in
these decreases /

(video, not visible in pdf) .
INncreases

d-sized vector Kclasses

P(class=k] ...
s vector o
. i O | softmax
representation — | I_llnear ° —
of the text o ayer_le =

Neural Network | < Whatis here?

)
)
O
@) ol |0 O O

I liked the cat . <eos>

0000
Q00
[©]0]@)
[©]0]0)
[o]e]e)

Most basic computational unit.
The input x € R? is a vector with d dimensions.
The output z € R. This means that we have d inputs and 1 output.

The output is obtained as:

d
ZZZ’w,;.’Ei—i—b:WTX—l—b

=1

w € R? are called the weights: they multiply each dimension of
the input by its ‘importance’.

b € R is called the bias and provides an additive shift.

Neurons with weights only index functions passing via the origin.

The bias allows for modelling the set of affine functions, which is a
superset of linear functions.

A

affine subspace

linear subspace

ey
o -

Visualization of a neuron

Activation function (some times
we call it just non-linearity)

From J&M3, §7.1

Identity (results in a linear model, can perform regression):
y=[f(x)=a(z) =2

Sigmoid (results in a log-linear model, can perform logistic
regression / binary classification):

1
1+e %2

y=f(x)=a(z) =0(2) =

Softmax with 2 classes is equivalent to sigmoid (a small
exercise: check that this is true; first it may seem to you
that softmax has more parameters)

y € [0,1]. To see why:
lim, ;o 0(2) =1

lim, , o 0(z)=0

1 — 0
o (une, FugepTh) If we set w = (0, 2):

The full neural network is y =

0-5'_ | |I | |
RN
" 10

From MacKay, §39.2

Each choice of w (a point in w € ©) indexes a function from the

space f(:): X =).

Parameter space

From MacKay, §39.2

d-sized vector Kclasses

P(class=k] ...
s vector o
. i O | softmax
representation — | I_llnear = —
of the text o ayer_le =

Neural Network

))
o9 1S <— Whatis here?
O @) O O

I liked the cat . <eos>

0000
[©00 0]
000
000

Word embeddings are a parameter matrix £ € R**V| (with as
many columns as words in the vocabulary)

For any word, we can fetch the corresponding column in £ to obtain
its representation.

As a pre-processing step, we encode each x €)V as a distinct
one-hot vector one-hot(z). E.g., for V = {all, happy, families}:

e one-hot(all) = [1,0,0]
e one-hot(happy) = [0, 1, 0]

e one-hot(families) = [0,0, 1]

During training and inference, any word in a context can be
embedded via matrix-vector multiplication.

E.g., for the word with 1 in its 5th dimension of the one-hot vector:

\% 1 1

d E X 5 = dH
3 VI

€5

So enc(z) = E one-hot(x)

To construct the representation of a document length n—1, we could just
concatenate the encodings (aka embeddings) of the corresponding
words:

enc(xy,...,x,) =enc(xri)o---oenc(zy,).

So enc(z1, ..., x,) € R

This may not be a great idea as the document length can be very long
and the number of words varies across documents.

So not really what we do for classification (but this architecture will
make much more sense when we get to 'language modelling, i.e.,
predicting next word).

Sum of embeddings
(Bag of Words, Bag of Embeddings)

:vector representation of the input text

o
o
o
o

: Token embeddings

T liked the cat . <e0s> <«— [nputtext

We will see much more powerful approaches soon

Schematic representation

K classes
P(class=k] ...

d-sized Linear 8 ‘|softma>i —
vector layer Jo J I:II—I

I liked the cat . <eos>

Neural networks consisting of a linear layer (or multiple linear layers without non-
linear activations in between) is called perceptron.

The networks on the previous slide is a perceptron (though not a general one, due
to the summation in the first layer).

Logistic regression is (effectively) a perceptron.?

'when we talk about LR, we imply the specific training objective (cross entropy), whereas
“perceptron” may also refer to the same linear mode trained with a different training algorithm

/ using different loss (perceptron algorithm)

Yet, there exists a class of problems that perceptrons cannot solve.!

Historically, the first such problem connected to limitations of
perceptrons is the XOR operator (Minsky and Papert 1969).

Consider the truth tables for various logical operators :

AND OR XOR
i 9 < | L1 T2 < | L1 T2 2
o 0 00 O O0y0 O O
o 1 0j]0 1 10 1 1
1 0 0;j1 0 1}1 0 1
1 1 11 1 1|1 1 O

YIn the input space, but they can if extra features like z; - 25 are added.

)
1 O
?
0 X,
0 1
a) x; AND x, b) x; OR xy ¢) x; XOR x5

For a threshold 7, we can draw a decision boundary, i.e., y =1 if
w1T1 + wexo + b > 7, else y = 0.

This boundary is a line: zo = (—w1/ws)x1 + (—b/ws) + 7/wo

How to make neural networks more expressive, i.e., capable of
indexing non-linear functions? Recipe:

1. stack perceptrons (layers)
2. use non-linear activations at the end of each layer

The resulting non-linear model is a multi-layer perceptron (MLP)!

Perceptrons can be stacked. We refer to their ordered sequence as
layers.

This creates feedforward networks, so that the output of layer [
is passed as input to the next layer [+ 1,% but not to the previous
ones 1,...,[—1.

In addition, this family of neural networks is fully connected,
meaning that for each layer, each output unit is the weighted sum
of all the input units.

The number of layers is the depth of the network (hence, the term
deep learning!)

Optionally, it can be passed also to any subsequent layer [+ 1, ..., L (skip connection).

The output z is passed through

a non-linear function a(-), which

gives us the hidden representation h € R" of intermediate layers.

Any differentiable3 non-linear function can be chosen. A common
choice is ReLU (others are sigmoid, tanh, ...):

ReLU(z) £ max(0, z)

A

A

Note: without non-linearities, a

multi-layer network remains linear!

SWe will see later why this is requirement for training the model

| M
| _ Feed
mfar Forward

RelLU
i

O00O0OOO0O0

1

_inTea/

FFN(:L') = max(O, xWy + bl)Wz + bs

XZ‘

1 @ O

0 O @ 59
0 1

a) The original x space

A
PR
1 O .°
~
s
”
~
P
”~
-’
’
s
’
7
P
e
”~
0 O —@ >
// hl
0 .- 1 2

b) The new (linearly separable) 4 space

From J&M3, §7.3

Key idea: space folding! h is linearly separable in the next layer.

But we already recognize perhaps

half of their components

Residual connections
and layer normalizatjon
\

\ ~ =

Feed-forward network: PO
after taking information from

Output
Probabilities

+ LAdd & Norm

Feed
Forward

Add & Norm

Sl
Add & Norm

other tokens, take a moment to

Multi-Head

. . . Feed Attention
think and process this information V| Forward ' N
\
T Nix Y | Add & Norm
. Add & Norm e
- . Masked
Encoder self-attention: — | "~ Masked
tokens look at each other Attention Attention
[}) [} g)
queries, keys, values N —) L — /)
are computed from Positional) & Positional
encoder states Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Feed-forward network:
after taking information from
other tokens, take a moment to
think and process this information

f

Decoder-encoder attention:

/ target token looks at the source

queries - from decoder states; keys
and values from encoder states

f

Decoder self-attention (masked):
tokens look at the previous tokens

queries, keys, values are computed
from decoder states

Text classification with neural networks

* Generalization of logistic regression

* Concept of word embeddings (will see and understand them
much more later)

* Bag-of-word models for classification

Neural networks:

* NNs are built out of neurons, a function from many input
dimensions to one output dimension.

* A multi-layer perceptron stacks multiple layers, each consisting
of multiple units and with a non-linear activation.

* Each layer captures useful features for the next layers.

	Slide 1
	Slide 2: Plan for today
	Slide 3: Classification
	Slide 4: Recap: Logistic regression
	Slide 5: Recap: Logistic regression
	Slide 6: Recap: Logistic regression
	Slide 7: Recap: Logistic regression
	Slide 8
	Slide 9: Gradient for LR: recap
	Slide 10: Relation to Naïve Bayes
	Slide 11: Relation to Naïve Bayes
	Slide 12: Relation to Naïve Bayes
	Slide 13
	Slide 14: Data efficiency of LR vs NB
	Slide 15: Cons of LR
	Slide 16: Robustness of LR
	Slide 17: Robustness of LR (2)
	Slide 18: Plan for today
	Slide 19: Neural models and word embeddings
	Slide 20: NN Classifier
	Slide 21: NN Classifier
	Slide 22: NN Classifier
	Slide 23: NN Classifier
	Slide 24: Reminder: Matrix-vector multiplication
	Slide 25: Representation of the document
	Slide 26: Representation of the document
	Slide 27: What do we optimize? (recap)
	Slide 28: What do we optimize?
	Slide 29: Neural models for text classification
	Slide 30: The neuron
	Slide 31: Why the bias?
	Slide 32: Visualization of a neuron
	Slide 33: Activation functions a(z)
	Slide 34: Sigmoid function
	Slide 35: Example: 2-dimensional input
	Slide 36: Parameter space
	Slide 37: Back to text models
	Slide 38: Input: word embeddings
	Slide 39: Input: word embeddings
	Slide 40: Composing word embedding in a doc representation
	Slide 41: Basic models: bags of words (= Embeddings)
	Slide 42: Schematic representation
	Slide 43: Perceptron
	Slide 44: Non-linear problems
	Slide 45: Linear separability
	Slide 46: Multilayer perceptron
	Slide 47: Stacking layers
	Slide 48: Non-linear activation functions
	Slide 49: Example: 2-layer MLP (aka 2 layer Feed Forward)
	Slide 50: MLP solution to XOR
	Slide 51: Soon more power NLP models!
	Slide 52: Conclusions

