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We considered

* Generalization of logistic regression

* Easy to integrate embeddings, estimated on unlabeled text
* BoW models

Now - Recurrent Neural Networks (RNNs)

First for text classification, and then for language modeling /
generation
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We will finish up with classification today by introducing a class of
models which will be particularly useful for text generation (RNNs)
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RNN reads a sequence of tokens
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The architecture may not be expressive enough, how can we
make the model more powerful?



Better at capturing different levels
of abstraction of representations;
crucial for hard tasks requiring
‘deep understanding’
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Is there a problem with passing only the last state as h?
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Models learn by backpropagation, it takes many steps to propagate to the very
beginning of the sentence; the model will not learn to reliably encode early parts of
the sentence (long context), how can we address it?
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Unfortunately, when stacking a lot of layers, you can have a problem with
propagating gradients from top to bottom through a deep network.

To mitigate, this we use Residual or Highway connections

Residual connections:

output

block with
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Input

Residual connection:
add a block’s input to
its output



Unfortunately, when stacking a lot of layers, you can have a problem also with

propagating gradients from top to bottom through a deep network (we will analyze
it for RNNs).

To mitigate, this we use Residual or Highway connections

Highway connections:
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A Gate: because of o,
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Unfortunately, when stacking a lot of layers, you can have a problem also with
propagating gradients from top to bottom through a deep network.

To mitigate, this we use Residual or Highway connections

Highway connections:

output

block with
some layers
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input x

Highway connection:
gated sum of a block’s
iNnput and output
Logistic sigmoid:

1
1+e=

g=oc(Wx+b)

o(z) =
Gate: because of o,
its values arein (0, 1)

If you apply the idea of highway connections in horizontal direction (along
sequence), you will obtain popular (stronger) RNN varieties, such as LSTMs



This is an example of multilayer Convolutional Neural Network but it
would look the same with multilayer / bi-directional RNNs
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Having residual connection is necessary for training large-language models typically
powered with Transformers (will talk about them in a couple of lectures)



We have not talked about CNNs in FNLP (due
to the storm) but you may have seen (or will

 Naive Bayes see them in other classes); they are / were
very popular in computer vision

very fast to train, robust, makes overly strong assumptions
* Logistic regression

still easy to train, requires strong features, fewer assumptions
* Feedfordward neural network (neural BoW)

still easy to train, few assumptions, breaks sentence into words
«  Convolutional Neural Networks

" -t ons (=) breal .
ngrams

 Recurrent Neural Networks

does not break a sentence into pieces, but the information is carried within
the sentence through a vector



Recall, the language model assigns the probability to a sequence of
words Y1,Y2;- -+, Yn, relying on the chain rule:

P(ylayZa .. }yn) = P(yl) -P(y2|y1) -P(y3|y1,y2) nee 'P(yn|y11 .o 3yn—1)

P(yt|y<t)
t=1

How do we compute P(y;|ly<:) !
Ngram models made independence assumptions, basically

breaking the sequence into smaller subsequences for
estimation
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any issues!?

hahn , director of the christian love and
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Ngram models clearly struggle with capturing longer context

NNs (e.g., RNINs) will let us model text without making explicit independence
assumptions



Neural language models has to:
|. Produce a representation of the prefix
2. Generate a probability distribution over the next token
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Predicting a word, given a prefix, is just a classification problem!
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What neural models to use for language modeling!?
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What neural models to use for language modeling!?
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What about just concatenating
embeddings of n previous words?

It a classic neural language models (aka

feedforward neural LM, aka neural ngram

LM)

As with ‘classic’ ngram LMs, it make a
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conditional independence assumption and

cannot capture long context. RNN model

addresses it!
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Training the language model

Training is done in a very much the same way as we train a classifier!

Loss = —log(p('yt|y<t))

we want the model
to predict this

l

Training example: I saw a cat on a mat <eos>
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Training for one sentence with RNN LM

Start: do not have
input, want to predict
the first token
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Training example: I saw a cat on a mat <eos>

(video, not visible in pdf)



RNN model is trained by back-
propagating through the computation

-
-...l
=2

t

dL, 3 dL; dh, dh,
dW, = dh; dh. dW,

W, is t times in the computation, as it is
used on every step of RNN

0000
O00O0

[C000=|oc00 0]

[co0Oo}—={oc00o0]

[cooco}l—={0000]

[coocol—={000 0]

[coco}l—={0000]

[ccoo)l—={0000)]

[co0Oo}—={0000]

[COOO

25
w
2X
N
2X
=
25

H

Each term in the sum corresponds to the “use’
of W,,atstep T

he=tanh(he-1Wh+ x: Wy) For the model to carry information across

- - distances, we cannot ignore terms with 7 <<t
o

U
+|5(X
(@]

|
Xt



h; h,
@) O @) Ol 10 O O O O
@) @) @) @) @) @ 0o O ol
@) o @) o O O O O O
O o O ol 10 o O O O
O O ol 10 O O O O
O O O O @) O O O
o O O O @) @) O O
of 19 [©f 19 9 [° @ [
Xt-3 Xt-2 Xt-1 Xt

ht: tanh(hHV\/h + Xth)

tanh
| B

ST
+|5(X

ol
)

|
Xt

RNN model is trained by back-
propagating through the computation
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RNN model is trained by back-
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Recall, highway connections:

i i

output

block with
some layers
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input x

Intuitively, LSTMs and GRUs add highway connections in the temporal
(‘horizontal’) dimension; now the information can also be propagated

through weighted edition, so 2" won’t vanish (go to zero)




Ngram language model

* relies on a short prefix, to get a distribution over next tokens
* explicit independence assumption (can’t use context outside of the ngram window)
* smoothing is necessary

Feedforward neural language models (and CNN language models)

* again, relies on a short prefix, to get a distribution over next tokens
* again, explicit independence assumption
* but smoothing is not necessary

RNN language model

* ‘compresses’ the past into a state, used to compute the distribution over next tokens
* no independence assumptions; the gradient descent learns to compress the past

* all the information is carried through hidden states ( but hard to carry it across long
distances) [LSTMs/GRUs make it easier to learn to carry but the bottleneck is still there]
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