
Recurrent Neural Networks (RNNs):

Classification and Language Modeling

Summary for Neural Text Classification (so far)

We considered

• Generalization of logistic regression

• Easy to integrate embeddings, estimated on unlabeled text

• BoW models

Now - Recurrent Neural Networks (RNNs)

First for text classification, and then for language modeling /

generation

Recap: NNs for text classification

We will finish up with classification today by introducing a class of

models which will be particularly useful for text generation (RNNs)

Recurrent Neural Networks: RNN cell

RNN reads a sequence of tokens

(video, not visible in pdf)

Vanilla RNN

Text representation with RNN

Text representation with RNN

The architecture may not be expressive enough, how can we

make the model more powerful?

Text representation with multi-layer RNN

Is there a problem with passing only the last state as h?

Better at capturing different levels

of abstraction of representations;

crucial for hard tasks requiring

‘deep understanding’

Text representation with multi-layer RNN

Models learn by backpropagation, it takes many steps to propagate to the very

beginning of the sentence; the model will not learn to reliably encode early parts of

the sentence (long context), how can we address it?

Text representation with bidirectional RNN

Stacking many layers

Unfortunately, when stacking a lot of layers, you can have a problem with

propagating gradients from top to bottom through a deep network.

To mitigate, this we use Residual or Highway connections

Residual connections:

Stacking many layers

Unfortunately, when stacking a lot of layers, you can have a problem also with

propagating gradients from top to bottom through a deep network (we will analyze

it for RNNs).

To mitigate, this we use Residual or Highway connections

Highway connections:

Logistic sigmoid:

Stacking many layers

Unfortunately, when stacking a lot of layers, you can have a problem also with

propagating gradients from top to bottom through a deep network.

To mitigate, this we use Residual or Highway connections

Highway connections:

Logistic sigmoid:

If you apply the idea of highway connections in horizontal direction (along

sequence), you will obtain popular (stronger) RNN varieties, such as LSTMs

Multilayer models with residual connections

This is an example of multilayer Convolutional Neural Network but it

would look the same with multilayer / bi-directional RNNs

Having residual connection is necessary for training large-language models typically

powered with Transformers (will talk about them in a couple of lectures)

Summary on classification
• Naïve Bayes

very fast to train, robust, makes overly strong assumptions

• Logistic regression

still easy to train, requires strong features, fewer assumptions

• Feedfordward neural network (neural BoW)

still easy to train, few assumptions, breaks sentence into words

• Convolutional Neural Networks

still easy to train, fewer assumptions, but still (~) breaks sentence into

ngrams

• Recurrent Neural Networks

does not break a sentence into pieces, but the information is carried within

the sentence through a vector

We have not talked about CNNs in FNLP (due

to the storm) but you may have seen (or will
see them in other classes); they are / were
very popular in computer vision

Language modeling

Recall, the language model assigns the probability to a sequence of

words , relying on the chain rule:

How do we compute ?

Ngram models made independence assumptions, basically

breaking the sequence into smaller subsequences for

estimation

Samples from ngram models: any issues?

Samples from ngram models: any issues?

Ngram models clearly struggle with capturing longer context

NNs (e.g., RNNs) will let us model text without making explicit independence

assumptions

Intuition

Neural language models has to:

1. Produce a representation of the prefix

2. Generate a probability distribution over the next token

Predicting a word, given a prefix, is just a classification problem!

High-level intuition for a language model

What neural models to use for language modeling?

Is using a bag-of-word representation

of context appropriate for language

modeling?

What neural models to use for language modeling?

Is using a bag-of-word representation

of context appropriate for language

modeling?

Non-linearity

What neural models to use for language modeling?

No! Clearly, a terrible idea

(ok though if you care only about

resulting word embeddings, see

previous lecture)

Non-linearity

Is using a bag-of-word representation

of context appropriate for language

modeling?

What neural models to use for language modeling?

What about just concatenating

embeddings of n previous words?

Non-linearity

(just
concatenate
embeddings)

What neural models to use for language modeling?

What about just concatenating

embeddings of n previous words?

Non-linearity

(just
concatenate
embeddings)

It a classic neural language models (aka

feedforward neural LM, aka neural ngram

LM)

As with ‘classic’ ngram LMs, it make a

conditional independence assumption and

cannot capture long context. RNN model

addresses it!

RNN language model

Multi-layer RNN language model

Training the language model

Training is done in a very much the same way as we train a classifier!

Training for one sentence with RNN LM

(video, not visible in pdf)

Learning RNNs: vanishing gradient problem

xtxt-1xt-2xt-3…

Lt
RNN model is trained by back-

propagating through the computation

Each term in the sum corresponds to the “use”

of Wh at step

For the model to carry information across

distances, we cannot ignore terms with << t

hth

Wh is t times in the computation, as it is

used on every step of RNN

Learning RNNs: vanishing gradient problem

xtxt-1xt-2xt-3…

Lt
RNN model is trained by back-

propagating through the computation

This the same

gradient as in

logistic

regression, not

a problem

hth

Learning RNNs: vanishing gradient problem

xtxt-1xt-2xt-3…

Lt
RNN model is trained by back-

propagating through the computation

This is just a

back-prop

through one

RNN unit

hth

Learning RNNs: vanishing gradient problem

xtxt-1xt-2xt-3…

Lt
RNN model is trained by back-

propagating through the computation

This is the term

which causes

the problem

hth

Learning RNNs: vanishing gradient problem

xtxt-1xt-2xt-3…

Lt
RNN model is trained by back-

propagating through the computationhth

For RNN with tanh activations:

This just a gradient of

the tanh activation

function; let’s not worry

about it

Learning RNNs: vanishing gradient problem

xtxt-1xt-2xt-3…

Lt
RNN model is trained by back-

propagating through the computationhth

For RNN with tanh activations:

This the gradient of the

linear operation, and it

is the troublemaker but

how come?

Learning RNNs: vanishing gradient problem

xtxt-1xt-2xt-3…

Lt
RNN model is trained by back-

propagating through the computationhth

For RNN with tanh activations:

This repetitive multiplication in BP results either

in gradient explosion (which can be addressed)

or vanishing (which is not easy to address)

The reason for the problem is the repetitive

multiplication by Wh on the forward pass

LSTMs (and GRUs)

Recall, highway connections:

Intuitively, LSTMs and GRUs add highway connections in the temporal

(‘horizontal’) dimension; now the information can also be propagated

through weighted edition, so won’t vanish (go to zero)

RNNs vs Ngram models

Ngram language model

• relies on a short prefix, to get a distribution over next tokens

• explicit independence assumption (can’t use context outside of the ngram window)

• smoothing is necessary

Feedforward neural language models (and CNN language models)

• again, relies on a short prefix, to get a distribution over next tokens

• again, explicit independence assumption

• but smoothing is not necessary

RNN language model

• ‘compresses’ the past into a state, used to compute the distribution over next tokens

• no independence assumptions; the gradient descent learns to compress the past

• all the information is carried through hidden states (but hard to carry it across long

distances) [LSTMs/GRUs make it easier to learn to carry but the bottleneck is still there]

	Slide 1
	Slide 2: Summary for Neural Text Classification (so far)
	Slide 3: Recap: NNs for text classification
	Slide 4: Recurrent Neural Networks: RNN cell
	Slide 5: RNN reads a sequence of tokens
	Slide 6: Vanilla RNN
	Slide 7: Text representation with RNN
	Slide 8: Text representation with RNN
	Slide 9: Text representation with multi-layer RNN
	Slide 10: Text representation with multi-layer RNN
	Slide 11: Text representation with bidirectional RNN
	Slide 12: Stacking many layers
	Slide 13: Stacking many layers
	Slide 14: Stacking many layers
	Slide 15: Multilayer models with residual connections
	Slide 16: Summary on classification
	Slide 17: Language modeling
	Slide 18: Samples from ngram models: any issues?
	Slide 19: Samples from ngram models: any issues?
	Slide 20: Intuition
	Slide 21: High-level intuition for a language model
	Slide 22: What neural models to use for language modeling?
	Slide 23: What neural models to use for language modeling?
	Slide 24: What neural models to use for language modeling?
	Slide 25: What neural models to use for language modeling?
	Slide 26: What neural models to use for language modeling?
	Slide 27: RNN language model
	Slide 28: Multi-layer RNN language model
	Slide 29: Training the language model
	Slide 30: Training for one sentence with RNN LM
	Slide 31: Learning RNNs: vanishing gradient problem
	Slide 32: Learning RNNs: vanishing gradient problem
	Slide 33: Learning RNNs: vanishing gradient problem
	Slide 34: Learning RNNs: vanishing gradient problem
	Slide 35: Learning RNNs: vanishing gradient problem
	Slide 36: Learning RNNs: vanishing gradient problem
	Slide 37: Learning RNNs: vanishing gradient problem
	Slide 38: LSTMs (and GRUs)
	Slide 39: RNNs vs Ngram models

