
Recurrent Neural Networks (RNNs): 

Classification and Language Modeling



Summary for Neural Text Classification (so far)

We considered

• Generalization of logistic regression

• Easy to integrate embeddings, estimated on unlabeled text

• BoW models

Now - Recurrent Neural Networks (RNNs)

First for text classification, and then for language modeling / 

generation



Recap: NNs for text classification

We will finish up with classification today by introducing a class of 

models which will be particularly useful for text generation (RNNs)



Recurrent Neural Networks: RNN cell



RNN reads a sequence of tokens

(video, not visible in pdf)



Vanilla RNN



Text representation with RNN



Text representation with RNN

The architecture may not be expressive enough, how can we 

make the model more powerful?



Text representation with multi-layer RNN

Is there a problem with passing only the last state as h?

Better at capturing different levels 

of abstraction of representations; 

crucial for hard tasks requiring 

‘deep understanding’



Text representation with multi-layer RNN

Models learn by backpropagation, it takes many steps to propagate to the very 

beginning of the sentence;  the model will not learn to reliably encode early parts of 

the sentence (long context),   how can we address it?



Text representation with bidirectional RNN



Stacking many layers

Unfortunately, when stacking a lot of layers, you can have a problem with 

propagating gradients from top to bottom through a deep network.

To mitigate, this we use Residual or Highway connections

Residual connections:



Stacking many layers

Unfortunately, when stacking a lot of layers, you can have a problem also with 

propagating gradients from top to bottom through a deep network (we will analyze 

it for RNNs).

To mitigate, this we use Residual or Highway connections

Highway connections:

Logistic sigmoid:



Stacking many layers

Unfortunately, when stacking a lot of layers, you can have a problem also with 

propagating gradients from top to bottom through a deep network.

To mitigate, this we use Residual or Highway connections

Highway connections:

Logistic sigmoid:

If you apply the idea of highway connections in horizontal direction (along 

sequence), you will obtain popular (stronger) RNN varieties, such as LSTMs



Multilayer models with residual connections

This is an example of multilayer Convolutional Neural Network but it 

would look the same with multilayer / bi-directional RNNs

Having residual connection is necessary for training  large-language models typically 

powered with Transformers (will talk about them in a couple of lectures) 



Summary on classification
• Naïve Bayes

very fast to train, robust, makes overly strong assumptions

• Logistic regression

still easy to train, requires strong features, fewer assumptions

• Feedfordward neural network (neural BoW)

still easy to train, few assumptions, breaks sentence into words

• Convolutional Neural Networks

still easy to train, fewer assumptions, but still (~) breaks sentence into 

ngrams

• Recurrent Neural Networks

does not break a sentence into pieces, but the information is carried within 

the sentence through a vector

We have not talked about CNNs in FNLP (due 

to the storm) but you may have seen (or will 
see them in other classes); they are / were 
very popular in computer vision



Language modeling

Recall, the language model assigns the probability to a sequence of 

words                   , relying on the chain rule:

How do we compute                ?

Ngram models made independence assumptions, basically 

breaking the sequence into smaller subsequences for 

estimation



Samples from ngram models: any issues?



Samples from ngram models: any issues?

Ngram models clearly struggle with capturing longer context

NNs (e.g., RNNs) will let us model text without making explicit independence 

assumptions



Intuition

Neural language models has to:

1. Produce a representation of the prefix 

2. Generate a probability distribution over the next token

Predicting a word, given a prefix, is just a classification problem!



High-level intuition for a language model



What neural models to use for language modeling?

Is using a bag-of-word representation 

of context appropriate for language 

modeling? 



What neural models to use for language modeling?

Is using a bag-of-word representation 

of context appropriate for language 

modeling? 

Non-linearity



What neural models to use for language modeling?

No! Clearly, a terrible idea

(ok though if you care only about 

resulting word embeddings, see 

previous lecture)

Non-linearity

Is using a bag-of-word representation 

of context appropriate for language 

modeling? 



What neural models to use for language modeling?

What about just concatenating 

embeddings of n previous words?

Non-linearity

(just 
concatenate 
embeddings)



What neural models to use for language modeling?

What about just concatenating 

embeddings of n previous words?

Non-linearity

(just 
concatenate 
embeddings)

It a classic neural language models (aka 

feedforward neural LM, aka neural ngram 

LM)

As with ‘classic’ ngram LMs, it make a 

conditional independence assumption and 

cannot capture long context. RNN model 

addresses it!  



RNN language model



Multi-layer RNN language model



Training the language model

Training is done in a very much the same way as we train a classifier!



Training for one sentence with RNN LM

(video, not visible in pdf)



Learning RNNs: vanishing gradient problem

xtxt-1xt-2xt-3…

Lt
RNN model is trained by back-

propagating through the computation

Each term in the sum corresponds to the “use” 

of Wh at step 

For the model to carry information across 

distances, we cannot ignore terms with     << t 

hth

Wh is t times in the computation, as it is 

used on every step of RNN



Learning RNNs: vanishing gradient problem

xtxt-1xt-2xt-3…

Lt
RNN model is trained by back-

propagating through the computation

This the same 

gradient as in 

logistic 

regression, not 

a problem

hth



Learning RNNs: vanishing gradient problem

xtxt-1xt-2xt-3…

Lt
RNN model is trained by back-

propagating through the computation

This is just a 

back-prop 

through one 

RNN unit

hth



Learning RNNs: vanishing gradient problem

xtxt-1xt-2xt-3…

Lt
RNN model is trained by back-

propagating through the computation

This is the term 

which causes 

the problem 

hth



Learning RNNs: vanishing gradient problem

xtxt-1xt-2xt-3…

Lt
RNN model is trained by back-

propagating through the computationhth

For RNN with tanh activations:

This just a gradient of 

the tanh activation 

function; let’s not worry 

about it



Learning RNNs: vanishing gradient problem

xtxt-1xt-2xt-3…

Lt
RNN model is trained by back-

propagating through the computationhth

For RNN with tanh activations:

This the gradient of the 

linear operation, and it 

is the troublemaker but 

how come?



Learning RNNs: vanishing gradient problem

xtxt-1xt-2xt-3…

Lt
RNN model is trained by back-

propagating through the computationhth

For RNN with tanh activations:

This repetitive multiplication in BP results either 

in gradient explosion (which can be addressed) 

or vanishing (which is not easy to address) 

The reason for the problem is the repetitive 

multiplication by Wh  on the forward pass



LSTMs (and GRUs)

Recall, highway connections:

Intuitively, LSTMs and GRUs add highway connections in the temporal 

(‘horizontal’) dimension; now the information can also be propagated 

through weighted edition, so       won’t vanish (go to zero) 



RNNs vs Ngram models

Ngram language model

 

• relies on a short prefix, to get a distribution over next tokens

• explicit independence assumption (can’t use context outside of the ngram window)

• smoothing is necessary

Feedforward neural language models (and CNN language models)

 

• again, relies on a short prefix, to get a distribution over next tokens

• again, explicit independence assumption

• but smoothing is not necessary 

RNN language model

• ‘compresses’ the past into a state,  used to compute the distribution over next tokens

• no independence assumptions; the gradient descent learns to compress the past

• all the information is carried through hidden states ( but hard to carry it across long 

distances)  [LSTMs/GRUs make it easier to learn to carry but the bottleneck is still there]
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