Foundations for Natural Language Processing

Recurrent Neural Networks (RNNSs):
Classification and Language Modeling

lvan Titov
(with graphics/materials from Elena Voita)

® School of

informatics

We considered

* Generalization of logistic regression

* Easy to integrate embeddings, estimated on unlabeled text
* BoW models

Now - Recurrent Neural Networks (RNNs)

First for text classification, and then for language modeling /
generation

d-sized vector Kclasses

P(class=k] ...
s vector o
. i O | softmax
representation — | I_llnear ° —
of the text o ayer_le =

Neural Network | < Whatis here?

0000
[0 0 O]
[0000]
(000 0]
[0000]
[00OO]

I liked the cat . <eos>

We will finish up with classification today by introducing a class of
models which will be particularly useful for text generation (RNNs)

previous Iﬂ RNN Out
state cel

current
o input

(0000

Xt

RNN reads a sequence of tokens

No

Initial RNN |@
state (e.q., g
zerovector) |@

Text: I like the cat on a mat <eos>

not read yet

(D

(video, not visible in pdf)

Nt = taﬂh(ht—']\/\/h + Xt Wx)

—> S

\

tanh

J

This is our h: vector
representation of the text

Initial RNN 101 (o] (o] |o] (o] o] [o] |of| |o This final state
ol ol |o] le] lo ol . . .

state (.9, oo oo o 8 8 8 ol ‘knows” everything -
zerovector) o] le| |e| o] |e| |e| |o| |eo| lel it“saw”alltokens

ol ol lo| lol [ol o] [o o

of 1ol lo| lol lol ol lol lo

O @) O (@) @) @) O @)

o 19 [o] 19 [9 [o] o [o

I like the cat on a mat<eos>

This is our h: vector
representation of the text

Initial RNN 101 (o] (o] |o] (o] o] [o] |of| |o This final state
ol o] |o] o] 1ol Jo| lol 1ol lo]. . .

state (e.9., ool 1o ol el lo oo ol knows™ everything -
zerovector) o] le| |e| o] |e| |e| |o| |eo| lel it“saw”alltokens

ol ol lo| lol [ol o] [o o

of 1ol lo| lol lol ol lol lo

O @) O (@) @) @) O @)

o 19 [o] 19 [9 [o] o [o

I like the cat on a mat<eos>

The architecture may not be expressive enough, how can we
make the model more powerful?

Better at capturing different levels
of abstraction of representations;
crucial for hard tasks requiring
‘deep understanding’

Thisis our n: vector
representation of the text

(2)
2Mlayer (3@), 0], [a],2[0] 2
0 o 0 o o .
RNN @) ho o) h’l..O hzxo hio h4 8 Final state of
—> [© oL 1°f 1°l | ol the 2nd-layer
it O 0 R Gl I) B) || RNN
o o] [o] [o] [0 o]
@) @ @) (@) (©) 0
O ©) @) @) (@) 0
@) o @) ®) (®))
% S |Ji Q) %)
(@] O @] (@] (@]
o o) 0 0
d & d ld o
I like the cat <eos>

Is there a problem with passing only the last state as h?

Thisis our n: vector
representation of the text

(2)
thS
d) " p—
2" layer (3,2, [.2 [, 27.2 [
RNN O Nq ol N1 o hzxo hio ny o Final state of
—> |9e° Ofle 1%t 19l _1°| the2nd-layer
o[o o o[o 0
SR RNN
JL :IL)IL >
O O O @} o 0)
0 o](ol€—o€—o|€ o
O ©) @) @) (@) 0
@) o @) ®) (®))
0 o o o 0
o o ol o O
o o of o O
0 o of o 0

like the cat <eos>

-

Models learn by backpropagation, it takes many steps to propagate to the very
beginning of the sentence; the model will not learn to reliably encode early parts of
the sentence (long context), how can we address it?

Thisis our h: vector
representation of the text

(0]
o
Concatenate representations 8
from and backward RNN 8
O . .
O] Initial RNN
. state (e
Final state of |© o © © /zero vector
BaCk\/\/ard RNN the backward g 8 8 8
D — RNN e e e S}
@] (@) @] T
o [®) @]
(@] (@) @]
@] (©) @]

(000 O]

0000
- [co 00}

[O00 O]

like the cat <cos>

L

<bos>

Unfortunately, when stacking a lot of layers, you can have a problem with
propagating gradients from top to bottom through a deep network.

To mitigate, this we use Residual or Highway connections

Residual connections:

output

block with
some layers

N

Input

Residual connection:
add a block’s input to
its output

Unfortunately, when stacking a lot of layers, you can have a problem also with

propagating gradients from top to bottom through a deep network (we will analyze
it for RNNs).

To mitigate, this we use Residual or Highway connections

Highway connections:

Highway connection:

g C><><— 1—g gated sum of a block’s
output iNnput and output
- Logistic sigmoid:
block with 8 8
some layers g =o(Wx+b) o(z) = 1+}3‘I

A Gate: because of o,
input x its values are in (0, 1)

Unfortunately, when stacking a lot of layers, you can have a problem also with
propagating gradients from top to bottom through a deep network.

To mitigate, this we use Residual or Highway connections

Highway connections:

output

block with
some layers

¥ 3

input x

Highway connection:
gated sum of a block’s
iNnput and output
Logistic sigmoid:

1
1+e=

g=oc(Wx+b)

o(z) =
Gate: because of o,
its values arein (0, 1)

If you apply the idea of highway connections in horizontal direction (along
sequence), you will obtain popular (stronger) RNN varieties, such as LSTMs

This is an example of multilayer Convolutional Neural Network but it
would look the same with multilayer / bi-directional RNNs

I like the cat -
______________ (K tI
:__5 __________ S j more blocks
&—)e &—)e é« é« residual connection
é é é é around the block
‘0 O :
| |
| } |
: O 0 O D 0104 i block with 3
i O 0O olotol ot i convolutional layers
1
l_»f _______ Y, ____A____f____:[___:
0 0 ﬂ o
o) o o) o) o O
o) O o) 0} o O
@] O @) O O O
<pad> <pad> <bos> I like the

Having residual connection is necessary for training large-language models typically
powered with Transformers (will talk about them in a couple of lectures)

We have not talked about CNNs in FNLP (due
to the storm) but you may have seen (or will

 Naive Bayes see them in other classes); they are / were
very popular in computer vision

very fast to train, robust, makes overly strong assumptions
* Logistic regression

still easy to train, requires strong features, fewer assumptions
* Feedfordward neural network (neural BoW)

still easy to train, few assumptions, breaks sentence into words
« Convolutional Neural Networks

" -t ons (=) breal .
ngrams

 Recurrent Neural Networks

does not break a sentence into pieces, but the information is carried within
the sentence through a vector

Recall, the language model assigns the probability to a sequence of
words Y1,Y2;- -+, Yn, relying on the chain rule:

P(ylayZa .. }yn) = P(yl) -P(y2|y1) -P(y3|y1,y2) nee 'P(yn|y11 .o 3yn—1)

P(yt|y<t)
t=1

How do we compute P(y;|ly<:) !
Ngram models made independence assumptions, basically

breaking the sequence into smaller subsequences for
estimation

any issues!?

hahn , director of the christian love and

compassion was designed as a result of any form ,
in the transaction is active in the stuva grill .

eos

pupils from eastern europe , africa , saudi arabia
* s church , yearn for such an open structure of
tables several times on monday 14 september 2003 ,
his flesh when i was curious to know and also to
find what they are constructed with a speeding

arrow . eos

any issues!?

hahn , director of the christian love and

compassion was designed as a result of any form ,
in the transaction is active in the stuva grill .

eos

pupils from eastern europe , africa , saudi arabia
* s church , yearn for such an open structure of
tables several times on monday 14 september 2003 ,
his flesh when i was curious to know and also to
find what they are constructed with a speeding
arrow . eos

Ngram models clearly struggle with capturing longer context

NNs (e.g., RNINs) will let us model text without making explicit independence
assumptions

Neural language models has to:
|. Produce a representation of the prefix
2. Generate a probability distribution over the next token

P(*) —_

] get probability
— distribution for
%] - the next token

Neural network

process context

(previous history)

Predicting a word, given a prefix, is just a classification problem!

Output word

embe%dings
oo ! P(+IIsaw a cat ona)
Take dot-product of h with e ot — get prob.ability
output word embeddings [~{2229 -8 > distribution for
(XXX 8 D:I the next token
0000]—Q._ O
o N:vector representation of N
9] .
Neural network 8 contextI saw a cat ona
process context
o o] [o] [a [d [o (previous history)
8 8 8 8 8 8 <— Input word embeddings
of lo| lo| [o] |o [o
I saw a cat on a

exp(hey,)
Y- exp(hiey)

weV

P(yily<e) =

What neural models to use for language modeling!?

Output word
embeddings
o g ! P(+IIsaw a cat ona)
Take dot-product of h with 8 8 8 8 O |softmax —————
output word embeddings — 8 ‘—>':'|:|
0 0 0 0]—0O O
000 0]—0 E—
0 0 0 0]—Q_ O

Is using a bag-of-word representation

of context appropriate for language
modeling?

I saw a cat on a

get probability
distribution for
the next token

process context
(previous history)

What neural models to use for language modeling!?

Take dot-product of h with
output word embeddings

—

Output word
embeddings
—— ! P(+IIsaw a cat ona)
—==1 ¢ |softmax ————
000 0]—+-0 p—>LC]
0 0 0 0]—0O -
0 0 0 0]—0O |
000 0]—0O C—1
0000 Q. (|

Non-linearity

—

Q000

'\

S

o
—|Linear |, 8
layer 5

I saw a cat on

Is using a bag-of-word representation
of context appropriate for language
modeling?

=
—

get probability
distribution for
the next token

process context
(previous history)

Output word

embeddings
90690 8_ ! P(+IIsaw a cat ona) B
Take dot-product of h with 208 softmax ———— get probability
output word embeddings eIk e N = distribution for
O
0000 8 the next token
0.000]—+-0._ O
Non-linearity -
@} @) —
=l —>+ o Is using a bag-of-word representation
r .
o P e of context appropriate for language
\ modeling? process context
(previous history)
b No! Clearly, a terrible idea
(ok though if you care only about |

resulting word embeddings, see
" previous lecture)

I saw a cat on a

Take dot-product of h with
output word embeddings

Non-linearity

—

Q000

S

—»|Linear
layer

\ (just

concatenate
embeddings)

Output word

embeddings
—— ! P(+IIsaw a cat ona)
—220 -8 |softmax ————
000 0]—+0 p——>[1
0000]—~0 1
0000]—0 |
0000]—0 —
00 0 0]—+Q_ O

o

o
*llo
o

[coocol||loocoo] [c000]

cat on a

What about just concatenating
embeddings of n previous words?

get probability
distribution for
the next token

process context
(previous history)

Take dot-product of h with
output word embeddings

Non-linearity

—

Q000

S

—»|Linear
layer

\ (just

concatenate
embeddings)

Output word
embeddings

o

o
*llo
o

[coocol||loocoo] [c000]

cat on a

softmax

OO00000000

o] (0] (o] (@] (0] (0] @] (@] @)
o] (0] (o] (0] (0] (o] (@] (@] (@] pr=u
o] (0] (o] (0] (9] (0] @] (@] @)
Olojojojojojojolo

What about just concatenating
embeddings of n previous words?

It a classic neural language models (aka

feedforward neural LM, aka neural ngram

LM)

As with ‘classic’ ngram LMs, it make a

P(*|I saw a cat on a)

—

—

conditional independence assumption and

cannot capture long context. RNN model

addresses it!

get probability
distribution for
the next token

process context
(previous history)

predict the
next token

3
o
—+

I saw a cat on a

4

[c0co}l—={0000}—>

\ 4

o [[cocol—={0000}—>

'

0000

H|cocoo}l—>{0000}—>

)
[cooco}l—>{o000}—>
[cooco}l—={0000}—>

o [[ccoo}l—={oc0o0oo0}l—>

condition on the

cat on .
previous tokens

0
o
3

saw a

I

(0000 }e—{0000]

(0000)J«—1{0000]

(0000 J«—{0000]

(0000 }«—{0CO0T]

saw a cat

I

Training the language model

Training is done in a very much the same way as we train a classifier!

Loss = —log(p('yt|y<t))

we want the model
to predict this

l

Training example: I saw a cat on a mat <eos>

Model prediction: p(*|I saw a) Target Loss =-log (p(cat)) » min
| 0 |)
I 0 1 |decrease
— 0 m——
: < CQT —_— : - INcrease
— i =
0 X il decrease
O
1 g 1] -

Training for one sentence with RNN LM

Start: do not have
input, want to predict
the first token

0000

Initial
RNN state

we want the model
to predict this

l

Training example: I saw a cat on a mat <eos>

(video, not visible in pdf)

RNN model is trained by back-
propagating through the computation

-
-...l
=2

t

dL, 3 dL; dh, dh,
dW, = dh; dh. dW,

W, is t times in the computation, as it is
used on every step of RNN

0000
O00O0

[C000=|oc00 0]

[co0Oo}—={oc00o0]

[cooco}l—={0000]

[coocol—={000 0]

[coco}l—={0000]

[ccoo)l—={0000)]

[co0Oo}—={0000]

[COOO

25
w
2X
N
2X
=
25

H

Each term in the sum corresponds to the “use’
of W,,atstep T

he=tanh(he-1Wh+ x: Wy) For the model to carry information across

- - distances, we cannot ignore terms with 7 <<t
o

U
+|5(X
(@]

|
Xt

h; h,
@) O @) Ol 10 O O O O
@) @) @) @) @) @ 0o O ol
@) o @) o O O O O O
O o O ol 10 o O O O
O O ol 10 O O O O
O O O O @) O O O
o O O O @) @) O O
of 19 [©f 19 9 [° @ [
Xt-3 Xt-2 Xt-1 Xt

ht: tanh(hHV\/h + Xth)

tanh
| B

ST
+|5(X

ol
)

|
Xt

RNN model is trained by back-
propagating through the computation

t

dL, Zst dh; dh;

AW, Z<|dh, | dh. dW,

This the same
gradient as in
logistic
regression, not
a problem

7=0

h; h,

@) O @) Ol 10 O O O O

@) @) @) @) @) @ 0o O ol
@) o @) o O O O O O
O o O ol 10 o O O @)
O O ol 10 O O O O
O O O O @) O O O
o O O O @) @) O O
of 19 [©f 19 9 [° @ [
Xt-3 Xt-2 Xt-1 Xt

ht taﬂh ht ’]Wh+Xth)

N1 Wh

;'
H
-
Q
S
H:T

N

HX\

RNN model is trained by back-
propagating through the computation

dL,
dWh,

dht dh;

st
Tz: dh;

dWy,

|

Thisis just a
back-prop
through one
RNN unit

I

RNN model is trained by back-

h, h . propagating through the computation
I s
ol o] |o| o] o [e] o o] le ;
ol Jo] .|o| .Jol o] o] Jo| o] Jo
ol lel 1ol 1ol 1ol 1o lo| lo] lo Ly :Z dL . dh . dh,
ol 121 9] 9] |© ol 191 9] 10 dWh s dht th dWh
ol o] [o] [0 [of [o] [of [o I
o o] [o] |o |[of o lof |o .
of o [of |9 |o [of |of |o This is the term
S 19 O O 9 [© 19 |9 which causes
X 3 Xi.o Xiq X the problem

ht: taﬂh(ht—’lv\/h + Xth)

tanh
| B

ST
+|5(X

ol
)
I

Xt

I

RNN model is trained by back-

h, h . propagating through the computation
R s N
ol lo| lof (o] [e] |e]| o] lo| [o —
ol lol o] .ol lo]| o] .Jo| .|o] .Jo dL, dL; |dh;| dh-
@) @) @) o o O O @) O Z .
(@ % % % % % % % ©) dWh dht th dWh
O O ol |O O O O @)
o 1 1= O = = T P For RNN with tanh activations:
o O [©f 19 9 [°f 19 [(© 1
dht . 2
X3 X2 Xi1 Xt H diag(1l — hi1)Wh

|

he= tanh(he1Wh + xe Wy) This just a g_rad?ent of
the tanh activation

tanh function; let’s not worry
} (e he about it

O

ol T
)
I

oI

Xt

I

RNN model is trained by back-

h, h . propagating through the computation
R s N
ol lo| lof (o] [e] |e]| o] lo| [o , —
ol lol o] .ol lo]| o] .Jo| .|o] .Jo dL, dL; |dh;| dh-
ol 1ol lel 1o 1ol 1ol 1ol 1ol 1o — Z : :
ol 121 9] 9] |© ol 191 9] 10 dWh s dht th dWh
i i ol |O O O O @)
o 1 1= O = = T P For RNN with tanh activations:
o O [©f 19 9 [°f 19 [(© 1
dh . 9
X-3 Xt-2 X1 Xt dh.] [diag(1 — A3,)W,

k=1 T
he=tanh(NerWh + X Wy) This the gradient of the
linear operation, and it
ol tanh is the troublemaker but
Ny l '§X[}—’ N, how come?
4

|
Xt

000

I

RNN model is trained by back-

h, h . propagating through the computation
s
ol o] o] [of o [e] o o] le "
o| .|o| o] .Jel lo| o] Jo| Jo] o
ol 1ol lel 1o 1ol 1ol 1ol 1ol 1o dL; Z dLy |dh:| dh,
ol 121 9] 9] |© ol 191 9] 10 dWh dht th dWh
o o] o] |9 |[of o] [of [o
o 1 1= O = = T P For RNN with tanh activations:
o 1° 1o [d (9 [of |9 [o
dh .
Xt_3 Xt-2 Xt-l Xt ! (H dla,g]_ — hk—l—l)) Wj(f 'T)
he=tanh(NerWh + X Wy) This repetitive muItipIicati_on in BP results either
in gradient explosion (which can be addressed)
5 3l tanh or vanishing (which is not easy to address)
LR B}
4 The reason for the problem is the repetitive

v multiplication by W,, on the forward pass
1

Recall, highway connections:

i i

output

block with
some layers

N

input x

Intuitively, LSTMs and GRUs add highway connections in the temporal
(‘horizontal’) dimension; now the information can also be propagated

through weighted edition, so 2" won’t vanish (go to zero)

Ngram language model

* relies on a short prefix, to get a distribution over next tokens
* explicit independence assumption (can’t use context outside of the ngram window)
* smoothing is necessary

Feedforward neural language models (and CNN language models)

* again, relies on a short prefix, to get a distribution over next tokens
* again, explicit independence assumption
* but smoothing is not necessary

RNN language model

* ‘compresses’ the past into a state, used to compute the distribution over next tokens
* no independence assumptions; the gradient descent learns to compress the past

* all the information is carried through hidden states (but hard to carry it across long
distances) [LSTMs/GRUs make it easier to learn to carry but the bottleneck is still there]

	Slide 1
	Slide 2: Summary for Neural Text Classification (so far)
	Slide 3: Recap: NNs for text classification
	Slide 4: Recurrent Neural Networks: RNN cell
	Slide 5: RNN reads a sequence of tokens
	Slide 6: Vanilla RNN
	Slide 7: Text representation with RNN
	Slide 8: Text representation with RNN
	Slide 9: Text representation with multi-layer RNN
	Slide 10: Text representation with multi-layer RNN
	Slide 11: Text representation with bidirectional RNN
	Slide 12: Stacking many layers
	Slide 13: Stacking many layers
	Slide 14: Stacking many layers
	Slide 15: Multilayer models with residual connections
	Slide 16: Summary on classification
	Slide 17: Language modeling
	Slide 18: Samples from ngram models: any issues?
	Slide 19: Samples from ngram models: any issues?
	Slide 20: Intuition
	Slide 21: High-level intuition for a language model
	Slide 22: What neural models to use for language modeling?
	Slide 23: What neural models to use for language modeling?
	Slide 24: What neural models to use for language modeling?
	Slide 25: What neural models to use for language modeling?
	Slide 26: What neural models to use for language modeling?
	Slide 27: RNN language model
	Slide 28: Multi-layer RNN language model
	Slide 29: Training the language model
	Slide 30: Training for one sentence with RNN LM
	Slide 31: Learning RNNs: vanishing gradient problem
	Slide 32: Learning RNNs: vanishing gradient problem
	Slide 33: Learning RNNs: vanishing gradient problem
	Slide 34: Learning RNNs: vanishing gradient problem
	Slide 35: Learning RNNs: vanishing gradient problem
	Slide 36: Learning RNNs: vanishing gradient problem
	Slide 37: Learning RNNs: vanishing gradient problem
	Slide 38: LSTMs (and GRUs)
	Slide 39: RNNs vs Ngram models

