
Text Generation and Encoder-Decoder Models

Plan for today

Last time:

• Defined RNNs

• Used them for classification and language modeling

Today, we will

• see if can figure what RNN states captures

• see how to generate text from a neural language model

 (we will use RNNs but applicable to any other NN model)

• consider sequence-to-sequence tasks (e.g., machine translation)

• introduce a basic form of encoder-decoder models for seq2seq

Recap: Neural Language Modeling

Neural language models has to:

1. Produce a representation of the prefix

2. Generate a probability distribution over the next token

Predicting a word, given a prefix, it is just a classification problem!

Recap: High-level intuition for a language model

Recap: Multi-layer RNN language model

Recap: Training the language model

Training is done in a very much the same way as we train a classifier!

Interpreting RNNs

What an RNN does capture in its state?

Karpathy et el., 2015

https://arxiv.org/abs/1506.02078

we will look in a specific neuron,

and track its activation across a text

It is a character-level LM, i.e. models a sequence of characters (rather than words)

Trained on Tolstoy’s War and Peace and the source code of Linux Kernel (in C)

https://arxiv.org/abs/1506.02078

Karpathy et el., 2015

https://arxiv.org/abs/1506.02078

Any hypothesis what this neuron is

doing?

What an RNN does capture in its state?

https://arxiv.org/abs/1506.02078

Karpathy et el., 2015

https://arxiv.org/abs/1506.02078

Any hypothesis what this neuron is

doing?

It activates within the quotes (“ .. ”)

What an RNN does capture in its state?

https://arxiv.org/abs/1506.02078

Karpathy et el., 2015

https://arxiv.org/abs/1506.02078

Any hypothesis what this neuron is

doing?

What an RNN does capture in its state?

https://arxiv.org/abs/1506.02078

Karpathy et el., 2015

https://arxiv.org/abs/1506.02078

Any hypothesis what this neuron is

doing?

Activates within an if statement

What an RNN does capture in its state?

https://arxiv.org/abs/1506.02078

Karpathy et el., 2015

https://arxiv.org/abs/1506.02078

Many neurons are not so easily interpretable

What an RNN does capture in its state?

https://arxiv.org/abs/1506.02078

Sentiment neuron

This is from a much bigger LSTM model trained by OpenAI

on Amazon reviews

https://openai.com/research/unsupervised-

sentiment-neuron

They could also switch the sentiment at generation time to change

the sentiment of an utterance (call interventions)

Do RNNs learn syntax?

Ngrams are not able to capture syntactic agreement, but can RNNs?

Contrastive evaluation

Linzen, Dupoux and Goldberg, 2016

https://aclanthology.org/Q16-1037.pdf

Short summary:

- need to be careful to prevent the model from relying on non-

syntactic ‘shortcuts’

- LSTMs models trained for language modeling were not as strong

in that evaluation (but more powerful models will be)

https://aclanthology.org/Q16-1037.pdf

Generating text from a (R)NN language model

Generating text

To generate text using a language model, you could just sample tokens from

the probability distribution predicted by a model

Generating text

To generate text using a language model. you could just sample tokens from

the probability distribution predicted by a model

Generating text: greedy decoding

An alternative to sampling from the distribution is selecting the most

probable word at every step (called greedy decoding)

Anything you notice about these samples?

Generating text: greedy decoding

An alternative to sampling from the distribution is selecting the most

probable word at every step (called greedy decoding)

Anything you notice about these samples?

They contain only frequent words and are boring!

Generating text: greedy decoding

An alternative to sampling from the distribution is selecting the most

probable word at every step (called greedy decoding)

Anything you notice about these samples?

They contain only frequent words and are boring!

Greedy decoding is not generally a good way of

producing text from a LM (but is a viable strategy when the output is

more constrained, as in machine translation but we will talk later about it)

Distributions in human written texts

Humans generate “surprising” token, though many tokens are fairly

predictable

(We will discuss beam search later; think of it as of greedy

decoding)

Image from Holtzman et al. (ICLR 2020)

Controling diversity

We want the generated text to be coherent (or fluent) but also diverse (or

interesting)

The standard way of controlling the generation characteristics is the

softmax temperature parameter

Temperature

Temperature – more formally

Temperature – more formally

The most probably

choice does not

change, but with high

temperatures, all the

probabilities become

closer to each other

The samples will

become more diverse

Temperature – more formally

The most probably

choice does not

change, but with low

temperatures, all the

probabilities become

further away from

each other

The samples will

become more similar

Trade-off: coherence vs diversity

The choice of temperature parameters is dependent on your goal

/ situation

Varying temperature is tricky: if the temperature is too low, then

almost all tokens receive very low probability; if the temperature

is too high, plenty of tokens (not very good) will receive high

probability.

Top-k sampling

A simple heuristic is to always sample from top-K most likely

tokens: in this case, a model still has some choice (K tokens), but

the most unlikely ones will not be used.

Formally, you take top K predicted tokens, truncate the distribution

assigning 0 probability to the rest, and renormalize among the top K

Example samples (k = 10)

Issues with having a fixed k

But how do you choose an appropriate k?

The same k can be too low when the distribution is too flat (high

entropy) or too high if the distribution is too peaky (low entropy)

Nucleus sampling (top-p) – adaptive k

A more reasonable strategy is to consider not top-K most

probable tokens, but top-p% of the probability mass (nucleus

sampling)

Algorithmically it is similar to top-k (i.e. truncate and renormalize),

but now you truncate to top choices which together constitute at

least p%.

Nucleus sampling (top-p) – adaptive k

This makes the generation of ‘surprising’ tokens possible (unlike

top-k for a reasonable k)

The distribution profiles also starts to resemble those for human-

written texts

Summary so far

We now know how to

• build a neural network for language modeling

• train it on a corpus

• generate text from a neural language model

.. but how do we use these ideas if we want to solve a task?

• generate a translation of an English sentence into Chinese

• produce a summary of a document

• generate an answer to a question

Sequence-to-Sequence modeling

x – input sentence,

y - its translation

Encoder-decoder framework

• encoder - reads source sequence and produces its representation;

• decoder - uses source representation from the encoder to generate

the target sequence.

Language modeling perspective

Encoder-decoder in action

(video, not visible in pdf)

Encoder-decoder: under the hood

A lot like in language modeling, which was a lot like in text classification!

Simplest RNN-based Model:

Simplest RNN-based Model:

Sutskever et al. (2014)

Last encoder states: near-paraphrases seem close in the space!

Training

Training

(video, not visible in pdf)

Inference (aka decoding)

The simplest idea – greedy decoding, at each step, pick the most likely

token, but note:

We can also do sampling, but do we necessarily want surprising tokens in

machine translation?

But what if we use a sequence-to-sequence model to generate a

summary? To generate a report given a table? Generate a book given a

plot?

Inference (aka decoding)

The simplest idea – greedy decoding, at each step, pick the most likely

token, but note:

We can also do sampling, but do we necessarily want surprising tokens in

machine translation?

Summary

• Encoder-Decoder architecture for Seq2Seq

• Inference algorithms (greedy, sampling, temperature,…)

• We will add beam search next time as it is a natural

choice for inference in machine translation

	Slide 1
	Slide 2: Plan for today
	Slide 3: Recap: Neural Language Modeling
	Slide 4: Recap: High-level intuition for a language model
	Slide 5: Recap: Multi-layer RNN language model
	Slide 6: Recap: Training the language model
	Slide 7: Interpreting RNNs
	Slide 8: What an RNN does capture in its state?
	Slide 9: What an RNN does capture in its state?
	Slide 10: What an RNN does capture in its state?
	Slide 11: What an RNN does capture in its state?
	Slide 12: What an RNN does capture in its state?
	Slide 13: What an RNN does capture in its state?
	Slide 14: Sentiment neuron
	Slide 15: Do RNNs learn syntax?
	Slide 16: Contrastive evaluation
	Slide 17: Generating text from a (R)NN language model
	Slide 18: Generating text
	Slide 19: Generating text
	Slide 20: Generating text: greedy decoding
	Slide 21: Generating text: greedy decoding
	Slide 22: Generating text: greedy decoding
	Slide 23: Distributions in human written texts
	Slide 24: Controling diversity
	Slide 25: Temperature
	Slide 26: Temperature – more formally
	Slide 27: Temperature – more formally
	Slide 28: Temperature – more formally
	Slide 29: Trade-off: coherence vs diversity
	Slide 30: Top-k sampling
	Slide 31: Example samples (k = 10)
	Slide 32: Issues with having a fixed k
	Slide 33: Nucleus sampling (top-p) – adaptive k
	Slide 34: Nucleus sampling (top-p) – adaptive k
	Slide 35: Summary so far
	Slide 36: Sequence-to-Sequence modeling
	Slide 37: Encoder-decoder framework
	Slide 38: Language modeling perspective
	Slide 39: Encoder-decoder in action
	Slide 40: Encoder-decoder: under the hood
	Slide 41: Simplest RNN-based Model:
	Slide 42: Simplest RNN-based Model:
	Slide 43: Training
	Slide 44: Training
	Slide 45: Inference (aka decoding)
	Slide 46: Inference (aka decoding)
	Slide 47: Summary

