
Evaluation for generation, tokenization

Plan for today

Last time:

• Talked about generation and discussed inference algorithms

• Introduce vanilla encoder-decoder algorithms

Today, we will

• discuss how to evaluate text generation systems

• discuss tokenization and specifically subword tokenization

Recap: Generating text

To generate text using a language model, you could just sample tokens from

the probability distribution predicted by a model

Recap: Sequence-to-Sequence modeling

x – input sentence,

y - its translation

Recap: Encoder-decoder framework

Recap: simplest RNN-based Model:

Inference (aka decoding)

The simplest idea – greedy decoding, at each step, pick the most likely

token, but note:

We can also do sampling (e.g., nucleus), but this is not argmax, how can

approximate the global argmax better: beam-search

Beam search

Maintaining top hypotheses as you go

(video, not visible in pdf)

Beam search

Maintaining top hypotheses as you go

Why not sampling?

Actually, we can also sample in machine translation too (as with language

modelling)

The risk is that a sample translation can deviate from the source sentence

in meaning (i.e. hallucinate)

As discussed last time, sampling may be preferable to beam-search for

other seq2seq task, where there is more freedom in the choice of

generations (e.g., generate a story given keywords)

Evaluating text generation models

How to evaluate text generation?

Consider French to English machine translation

Source sentence: Le chat est assis sur le tapis

Human translation into English: The cat is on the carpet

How to evaluate text generation?

Consider French to English machine translation

Source sentence: Le chat est assis sur le tapis

Human translation into English: The cat is on the carpet

How can we design a metric which would score MT1 > MT2?

MT1: The cat is seated on the mat

MT2: The chat is assassinated on the tape

(We are looking into automatic extrinsic evaluation)

Idea: count overlapping ngrams - BLEU

Typically, we need more than 1 human (aka reference)

translation per sentence to have reliable evaluation.

Let’s focus on unigrams (individual tokens) for now

MT: The the the the the the the a

Reference 1: The cat is on the mat

Reference 2: There is a cat on the mat

(ignore capitalization for evaluation, i.e. treat ‘The’ and ‘the’ as the same word)

Idea: count overlapping ngrams - BLEU

MT: The the the the the the the a

Reference 1: The cat is on the mat

Reference 2: There is a cat on the mat

Modified unigram precision: 2 / 7

‘the’ appears 7 times

‘the’ appears 2 times

‘the’ appears 1 time

Idea: count overlapping ngrams - BLEU

MT: The the the the the the the a

Reference 1: The cat is on the mat

Reference 2: There is a cat on the mat

Modified unigram precision: (2 + 1) / (7 + 1) = 3 / 8

Aggregate over all unigrams in the MT (‘candidate’)

‘a’ appears 1 time

‘a’ appears 0 times

‘a’ appears 1 time

BLEU metric

Actual BLEU is considerably more complicated, as needs to

- aggregate over the entire test set

- aggregate over ngrams of different order (unigrams, bigrams, …)

- penalize short translation (remember from parsing: precision favors models

producing short outputs)

- …

There are other ngram overlap metrics which can be more suitable

for other text generation problems (e.g., ROUGE for summarization)

Ngram overlap metrics - weaknesses

- do not account for lexical paraphrases (e.g., substituting words

with their synonyms)

- even more problematic for long text generation (e.g.,

document machine translation)

- unreliable for tasks with less restricted outputs (e.g., generate

“a scary novel about Edinburgh”)

- do not sufficiently penalize hallucinations

..

What can we do if they are so unreliable?

- Human evaluation (expensive, hard to relate to results of older experiments)

- Neural model-based metrics (e.g., BERTScore, GPTScore)

- Specialized metrics (e.g., FActScore for hallucinations)

Tokenization

Tokenization

We considered tokenization of sentences into ‘words’
(whatever we mean by a ‘word’)

Tokenization

Instead of ‘unrelated’, we get two tokens ‘un@@’ ‘related’

why subword tokenization?

Tokenization

Instead of ‘unrelated’, we get two tokens ‘un@@’ ‘related’

why subword tokenization?

• reduces sparsity

• memory requirement

• results in a speeds-up (recall: softmax involves summation over all token

types, few token typs -> faster computation)

• may provide an appropriate bias for compositionality, e.g., tokens for

“unrelated” and “related” may be shared (e.g., include related)

Tokenization

Instead of ‘unrelated’, we get two tokens ‘un@@’ ‘related’

Especially crucial for morphologically-rich languages

Standard segmentation algorithms rely on character ngram frequency, not on

morphology (e.g., Byte-Pair Encoding)

Used in virtually any modern neural model

Byte pair encoding algorithm

Byte Pair Encoding (BPE) algorithm (Gage, 1994) was applied to

subword segmentation in machine translation by Sennrich, Haddow, and

Birch (ACL 2015)

BPE, two phases

- Training: learn "BPE rules", i.e., which pairs of symbols to merge;

- Inference: apply learned rules to segment a text.

BPE: training

Start with individual characters as tokens

Repeat:

- count pairs of tokens: how many times each pair occurs together

in the training data;
- find the most frequent pair of tokens;

- merge this pair - add a merge to the merge table, and the new

token to the vocabulary.

In practice, the algorithm first counts how many times each word

appeared in the data.
=> Using this information, one can count pairs of adjacent tokens more

easily.

Note the tokens do not cross word boundary - everything happens within

words.

BPE: training

BPE: training

BPE: training

BPE: training

BPE: training

BPE: training

BPE: training

BPE: training

BPE: training

BPE: training

BPE: training

BPE: training

BPE: training

BPE: training

BPE: training

BPE: training

BPE: training

BPE: training

BPE: training

BPE: training

BPE: training

BPE: training

BPE: inference

After training, we are left with a vocabulary and a merge

tables (ordered set of merges)

The algorithm starts with segmenting a word into a

sequence of characters. After that, it iteratively makes the

following two steps until no merge it possible:

• among all possible merges at this step, find the highest

merge in the table (highest -> more frequent);

• apply this merge.

BPE: inference

BPE: inference

BPE: inference

BPE: inference

BPE: inference

BPE: inference

BPE: inference

BPE: inference

BPE: inference

BPE: inference

BPE: inference

BPE: inference

BPE: inference

BPE: inference

BPE: inference

BPE: inference

BPE: inference

BPE: inference

BPE: inference

BPE: inference

BPE: inference

BPE: inference

BPE: inference

BPE: inference

BPE: inference

BPE: inference

BPE: inference

BPE: inference

BPE: inference

BPE: inference

BPE: inference

BPE – drawbacks / discussion

• The induced segmentation does not align with linguistic morphological

boundaries.

• Frequent words that share the same morphemes (e.g., roots) are

segmented differently from less frequent words.

• The segmentation does not directly correspond to the information content of

a token or the computational effort required in a neural model.

What can we do about it?

Summary

• Done with inference algorithms (greedy, beam-search,

sampling, temperature,…)

• Evaluating text generation (e.g., BLEU)

• Subword tokenization

	Slide 1
	Slide 2: Plan for today
	Slide 3: Recap: Generating text
	Slide 4: Recap: Sequence-to-Sequence modeling
	Slide 5: Recap: Encoder-decoder framework
	Slide 6: Recap: simplest RNN-based Model:
	Slide 7: Inference (aka decoding)
	Slide 8: Beam search
	Slide 9: Beam search
	Slide 10: Why not sampling?
	Slide 11: Evaluating text generation models
	Slide 12: How to evaluate text generation?
	Slide 13: How to evaluate text generation?
	Slide 14: Idea: count overlapping ngrams - BLEU
	Slide 15: Idea: count overlapping ngrams - BLEU
	Slide 16: Idea: count overlapping ngrams - BLEU
	Slide 17: BLEU metric
	Slide 18: Ngram overlap metrics - weaknesses
	Slide 19: Tokenization
	Slide 20: Tokenization
	Slide 21: Tokenization
	Slide 22: Tokenization
	Slide 23: Tokenization
	Slide 24: Byte pair encoding algorithm
	Slide 25: BPE: training
	Slide 26: BPE: training
	Slide 27: BPE: training
	Slide 28: BPE: training
	Slide 29: BPE: training
	Slide 30: BPE: training
	Slide 31: BPE: training
	Slide 32: BPE: training
	Slide 33: BPE: training
	Slide 34: BPE: training
	Slide 35: BPE: training
	Slide 36: BPE: training
	Slide 37: BPE: training
	Slide 38: BPE: training
	Slide 39: BPE: training
	Slide 40: BPE: training
	Slide 41: BPE: training
	Slide 42: BPE: training
	Slide 43: BPE: training
	Slide 44: BPE: training
	Slide 45: BPE: training
	Slide 46: BPE: training
	Slide 47: BPE: training
	Slide 48: BPE: inference
	Slide 49: BPE: inference
	Slide 50: BPE: inference
	Slide 51: BPE: inference
	Slide 52: BPE: inference
	Slide 53: BPE: inference
	Slide 54: BPE: inference
	Slide 55: BPE: inference
	Slide 56: BPE: inference
	Slide 57: BPE: inference
	Slide 58: BPE: inference
	Slide 59: BPE: inference
	Slide 60: BPE: inference
	Slide 61: BPE: inference
	Slide 62: BPE: inference
	Slide 63: BPE: inference
	Slide 64: BPE: inference
	Slide 65: BPE: inference
	Slide 66: BPE: inference
	Slide 67: BPE: inference
	Slide 68: BPE: inference
	Slide 69: BPE: inference
	Slide 70: BPE: inference
	Slide 71: BPE: inference
	Slide 72: BPE: inference
	Slide 73: BPE: inference
	Slide 74: BPE: inference
	Slide 75: BPE: inference
	Slide 76: BPE: inference
	Slide 77: BPE: inference
	Slide 78: BPE: inference
	Slide 79: BPE: inference
	Slide 80: BPE – drawbacks / discussion
	Slide 81: Summary

