
Evaluation for generation, tokenization



Plan for today

Last time:

• Talked about generation and discussed inference algorithms

• Introduce vanilla encoder-decoder algorithms

Today, we will

• discuss how to evaluate text generation systems

• discuss tokenization and specifically subword tokenization

 



Recap: Generating text

To generate text using a language model, you could just sample tokens from 

the probability distribution predicted by a model



Recap: Sequence-to-Sequence modeling

x – input sentence,  

y - its translation



Recap: Encoder-decoder framework



Recap: simplest RNN-based Model:



Inference (aka decoding)

The simplest idea – greedy decoding, at each step, pick the most likely 

token, but note:

We can also do sampling (e.g., nucleus), but this is not argmax, how can 

approximate the global argmax better:   beam-search



Beam search

Maintaining top hypotheses as you go

(video, not visible in pdf)



Beam search

Maintaining top hypotheses as you go



Why not sampling?

Actually, we can also sample in machine translation too (as with language 

modelling)

The risk is that a sample translation can deviate from the source sentence 

in meaning (i.e. hallucinate)

As discussed last time, sampling may be preferable to beam-search for 

other seq2seq task, where there is more freedom in the choice of 

generations  (e.g., generate a story given keywords)



Evaluating text generation models



How to evaluate text generation?

Consider French to English machine translation

Source sentence: Le chat est assis sur le tapis

Human translation into English:  The cat is on the carpet



How to evaluate text generation?

Consider French to English machine translation

Source sentence: Le chat est assis sur le tapis

Human translation into English:  The cat is on the carpet

How can we design a metric which would score MT1 > MT2?

MT1:      The cat is seated on the mat

MT2:      The chat is assassinated on the tape

(We are looking into automatic extrinsic evaluation)



Idea:  count overlapping ngrams  - BLEU

Typically, we need more than 1 human (aka reference) 

translation per sentence to have reliable evaluation.  

Let’s focus on unigrams (individual tokens) for now

MT:        The the the the the the the a

Reference 1:  The cat is on the mat

Reference 2:   There is a cat on the mat

(ignore capitalization for evaluation, i.e. treat ‘The’ and ‘the’ as the same word)



Idea:  count overlapping ngrams  - BLEU

MT:        The the the the the the the a

Reference 1:  The cat is on the mat

Reference 2:   There is a cat on the mat

Modified unigram precision:   2   /  7 

‘the’ appears 7 times

‘the’ appears  2 times

‘the’ appears 1 time 



Idea:  count overlapping ngrams - BLEU 

MT:        The the the the the the the a

Reference 1:  The cat is on the mat

Reference 2:   There is a cat on the mat

Modified unigram precision:   (2 + 1)  /  (7 + 1) =  3 / 8

Aggregate over all unigrams in the MT (‘candidate’)

‘a’ appears 1 time

‘a’ appears  0 times

‘a’ appears 1 time 



BLEU metric

Actual BLEU is considerably more complicated, as needs to

- aggregate over the entire test set

- aggregate over ngrams of different order (unigrams, bigrams, …)

- penalize short translation (remember from parsing: precision favors models 

producing short outputs)

- …

There are other ngram overlap metrics which can be more suitable 

for other text generation problems (e.g., ROUGE for summarization)



Ngram overlap metrics - weaknesses

- do not account for lexical paraphrases (e.g., substituting words 

with their synonyms)

- even more problematic for long text generation (e.g., 

document machine translation)

- unreliable for tasks with less restricted outputs (e.g., generate 

“a scary novel about Edinburgh”)

- do not sufficiently penalize hallucinations

..

What can we do if they are so unreliable?

- Human evaluation (expensive, hard to relate to results of older experiments)

- Neural model-based metrics (e.g., BERTScore, GPTScore)

- Specialized metrics (e.g., FActScore for hallucinations)



Tokenization



Tokenization

We considered tokenization of sentences into ‘words’ 
(whatever we mean by a ‘word’)



Tokenization

Instead of ‘unrelated’, we get two tokens   ‘un@@’ ‘related’

why subword tokenization?



Tokenization

Instead of ‘unrelated’, we get two tokens   ‘un@@’ ‘related’

why subword tokenization?

• reduces sparsity

• memory requirement

• results in a speeds-up (recall: softmax involves summation over all token 

types, few token typs -> faster computation)

• may provide an appropriate bias for compositionality, e.g.,  tokens for 

“unrelated” and “related” may be shared (e.g., include related) 



Tokenization

Instead of ‘unrelated’, we get two tokens   ‘un@@’ ‘related’

Especially crucial for morphologically-rich languages

Standard segmentation algorithms rely on character ngram frequency, not on 

morphology (e.g., Byte-Pair Encoding)

Used in virtually any modern neural model



Byte pair encoding algorithm

Byte Pair Encoding (BPE) algorithm (Gage, 1994) was applied to 

subword segmentation in machine translation by Sennrich, Haddow, and 

Birch (ACL 2015)

BPE, two phases

- Training: learn "BPE rules", i.e., which pairs of symbols to merge;

- Inference: apply learned rules to segment a text.



BPE: training

Start with individual characters as tokens

Repeat:

- count pairs of tokens: how many times each pair occurs together 

in the training data;
- find the most frequent pair of tokens;

- merge this pair - add a merge to the merge table, and the new 

token to the vocabulary.

In practice, the algorithm first counts how many times each word 

appeared in the data. 
=> Using this information, one can count pairs of adjacent tokens more 

easily.

Note the tokens do not cross word boundary - everything happens within 

words.



BPE: training



BPE: training



BPE: training



BPE: training



BPE: training



BPE: training



BPE: training



BPE: training



BPE: training



BPE: training



BPE: training



BPE: training



BPE: training



BPE: training



BPE: training



BPE: training



BPE: training



BPE: training



BPE: training



BPE: training



BPE: training



BPE: training



BPE: inference

After training, we are left with a vocabulary and a merge 

tables (ordered set of merges)

The algorithm starts with segmenting a word into a 

sequence of characters. After that, it iteratively makes the 

following two steps until no merge it possible:

• among all possible merges at this step, find the highest 

merge in the table (highest -> more frequent);

• apply this merge.



BPE: inference



BPE: inference



BPE: inference



BPE: inference



BPE: inference



BPE: inference



BPE: inference



BPE: inference



BPE: inference



BPE: inference



BPE: inference



BPE: inference



BPE: inference



BPE: inference



BPE: inference



BPE: inference



BPE: inference



BPE: inference



BPE: inference



BPE: inference



BPE: inference



BPE: inference



BPE: inference



BPE: inference



BPE: inference



BPE: inference



BPE: inference



BPE: inference



BPE: inference



BPE: inference



BPE: inference



BPE – drawbacks / discussion

• The induced segmentation does not align with linguistic morphological 

boundaries.

• Frequent words that share the same morphemes (e.g., roots) are 

segmented differently from less frequent words.

• The segmentation does not directly correspond to the information content of 

a token or the computational effort required in a neural model.

What can we do about it?



Summary

• Done with inference algorithms (greedy, beam-search, 

sampling, temperature,…)

• Evaluating text generation (e.g., BLEU)

• Subword tokenization
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