Foundations for Natural Language Processing Evaluation for generation, tokenization

Ivan Titov (with graphics/materials from Elena Voita)

Plan for today

Last time:

- Talked about generation and discussed inference algorithms
- Introduce vanilla encoder-decoder algorithms

Today, we will

- discuss how to evaluate text generation systems
- discuss tokenization and specifically subword tokenization

Recap: Generating text

To generate text using a language model, you could just *sample* tokens from the probability distribution predicted by a model

Recap: Sequence-to-Sequence modeling

Recap: Encoder-decoder framework

Recap: simplest RNN-based Model:

Inference (aka decoding)

$$y' = \arg \max_{y} p(y|x) = \arg \max_{y} \prod_{t=1}^{n} p(y_t|y_{< t}, x)$$
 How to find the argmax?

The simplest idea – greedy decoding, at each step, pick the most likely token, but note:

$$\arg \max_{y} \prod_{t=1}^{n} p(y_t | y_{< t}, x) \neq \prod_{t=1}^{n} \arg \max_{y_t} p(y_t | y_{< t}, x)$$

We can also do sampling (e.g., nucleus), but this is not argmax, how can approximate the <u>global</u> argmax better: beam-search

Beam search

Maintaining top hypotheses as you go

Start with the begin of sentence token or with an empty sequence

(video, not visible in pdf)

Beam search

Maintaining top hypotheses as you go

All hypotheses are complete - generation ended

Why not sampling?

Actually, we can also sample in machine translation too (as with language modelling)

The risk is that a sample translation can deviate from the source sentence in meaning (i.e. hallucinate)

As discussed last time, sampling may be preferable to beam-search for other seq2seq task, where there is more freedom in the choice of generations (e.g., generate a story given keywords) Evaluating text generation models

How to evaluate text generation?

Consider French to English machine translation

Source sentence: Le chat est assis sur le tapis

Human translation into English: The cat is on the carpet

How to evaluate text generation?

Consider French to English machine translation

Source sentence: Le chat est assis sur le tapis

Human translation into English: The cat is on the carpet

How can we design a metric which would score MTI > MT2?

MTI: The cat is seated on the mat

MT2: The chat is assassinated on the tape

(We are looking into *automatic extrinsic evaluation*)

Idea: count overlapping ngrams - BLEU

Typically, we need more than I human (aka reference) translation per sentence to have reliable evaluation.

Let's focus on unigrams (individual tokens) for now

MT: The the the the the the a

Reference I: The cat is on the mat

Reference 2: There is a cat on the mat

(ignore capitalization for evaluation, i.e. treat 'The' and 'the' as the same word)

Idea: count overlapping ngrams - BLEU

MT: <u>The the the the the the the</u> a Reference I: <u>The</u> cat is on <u>the</u> mat Reference 2: There is a cat on the mat

'the' appears 7 times

'the' appears 2 times

'the' appears 1 time

Modified unigram precision: 2 / 7

Idea: count overlapping ngrams - BLEU

MT: The the the the the the the \underline{a} 'a' appears 1 time Reference 1: The cat is on the mat 'a' appears 0 times Reference 2: There is \underline{a} cat on the mat 'a' appears 1 time Modified unigram precision: (2 + 1) / (7 + 1) = 3 / 8Aggregate over all unigrams in the MT ('candidate')

BLEU metric

Actual BLEU is considerably more complicated, as needs to

- aggregate over the entire test set
- aggregate over ngrams of different order (unigrams, bigrams, ...)
- penalize short translation (remember from parsing: *precision* favors models producing short outputs)

There are other ngram overlap metrics which can be more suitable for other text generation problems (e.g., ROUGE for summarization)

Ngram overlap metrics - weaknesses

- do not account for lexical paraphrases (e.g., substituting words with their synonyms)
- even more problematic for long text generation (e.g., document machine translation)
- unreliable for tasks with less restricted outputs (e.g., generate "a scary novel about Edinburgh")
- do not sufficiently penalize hallucinations

What can we do if they are so unreliable?

••

- Human evaluation (expensive, hard to relate to results of older experiments)
- Neural model-based metrics (e.g., BERTScore, GPTScore)
- Specialized metrics (e.g., FActScore for hallucinations)

We considered tokenization of sentences into 'words' (whatever we mean by a 'word')

Word-level

- fixed vocabulary
- can process only a fixed number of words

Subword-level

- open vocabulary
- rare and unknown tokens are encoded as sequences of subword units

Instead of 'unrelated', we get two tokens 'un@@' 'related'

Tokenization

why subword tokenization?

Word-level

- fixed vocabulary
- can process only a fixed number of words

Subword-level

- open vocabulary
- rare and unknown tokens are encoded as sequences of subword units

Instead of 'unrelated', we get two tokens 'un@@' 'related'

Tokenization

why subword tokenization?

- reduces sparsity
- memory requirement
- results in a speeds-up (recall: softmax involves summation over all token types, few token typs -> faster computation)
- <u>may</u> provide an appropriate bias for compositionality, e.g., tokens for "unrelated" and "related" <u>may</u> be shared (e.g., include related)

Word-level

- fixed vocabulary
- can process only a fixed number of words

Subword-level

- open vocabulary
- rare and unknown tokens are encoded as sequences of subword units

Instead of 'unrelated', we get two tokens 'un@@' 'related'

Tokenization

Especially crucial for morphologically-rich languages

Standard segmentation algorithms rely on character ngram frequency, not on morphology (e.g., Byte-Pair Encoding)

Used in virtually any modern neural model

Byte pair encoding algorithm

Byte Pair Encoding (BPE) algorithm (Gage, 1994) was applied to subword segmentation in machine translation by Sennrich, Haddow, and Birch (ACL 2015)

BPE, two phases

- Training: learn "BPE rules", i.e., which pairs of symbols to merge;
- Inference: apply learned rules to segment a text.

Start with individual characters as tokens

Repeat:

- count pairs of tokens: how many times each pair occurs together in the training data;
- find the most frequent pair of tokens;
- merge this pair add a merge to the merge table, and the new token to the vocabulary.

In practice, the algorithm first counts how many times each word appeared in the data.

=> Using this information, one can count pairs of adjacent tokens more easily.

Note the tokens do not cross word boundary - everything happens within words.

Initial vocabulary:	word	count	Current merge table:
characters	cat	4	(empty)
ļ	mat	5	(empty)
Split each word	mats	2	
into characters	mate	3	
	ate	3	
	eat	2	

Count pairs of tokens:	word	count	Current merge table:
a + † : 20	cat	4	(empty)
m + a : 10	m a t	5	
† + e : 7	mats	2	
c + a : 4	mate	3	
† + s : 2	ate	3	
e + a : 2	e a t	2	

Words in the data:

Current merge table:

a t -> at

	word	count	Current merge table:
	c a t	4	a t -> at
	m a t	5	
Apply the merge	mats	2	
to the data	m a t e	3	
	ate	3	
	e a t	2	

Count pairs of new tokens:	word	count	Current merge table:
m + at : 10	c at	4	a t -> at
at + e : 7	m at	5	
c + at : 4	m at s	2	
at + s : 2	m at e	3	
e + at : 2	at e	3	
	e at	2	

Words in the data:

Count pairs of new tokens:	word	count
m + at : 10	c at	4
at + e: 7	m at	5
c + at: 4 Add the most	m at s	2
at + s: 2 frequent pair to	m at e	3
e + at : 2	at e	3
	e at	2

Current merge table:
a t -> at
m at -> mat

	word	count	Current merge table:
	c at	4	a t -> at
	m at	5	m at -> mat
Apply the merge	m at s	2	
to the data	m at e	3	
	at e	3	
	e at	2	

	word	count	Current merge table:
	c at	4	a † -> at
	mat	5	m at -> mat
Apply the merge	mat s	2	
to the data	mat e	3	
	at e	3	
	e at	2	

c + at: 4 c at 4 a + -> at at + e: 4 mat 5 m at -> mat mat + e: 3 mat s 2	Count pairs of new tokens:	word	count	Current merge table:
at + e: 4 mat 5 m at -> mat mat + e: 3 mat s 2 mat + s: 2 mat e 3 e + at: 2 at e 3 e at 2 2	c + at : 4	c at	4	a † -> at
mat + e: 3 mat s 2 mat + s: 2 mat e 3 e + at: 2 at e 3 e at 2	at + e : 4	mat	5	m at -> mat
mat + s: 2 mat e 3 e + at: 2 at e 3 e at 2	mat + e : 3	mat s	2	
e + at: 2 at e 3 e at 2	mat + s : 2	mat e	3	
e at 2	e + at : 2	at e	3	
		e at	2	

Count pairs of new tokens:	word	count
c + at : 4	c at	4
at + e: 4	mat	5
mat + e: 3 Add the most	mat s	2
mat + s: 2 frequent pair to	mat e	3
e + at : 2	at e	3
	e at	2

Current merge table:
a † -> at
m at -> mat
c at -> cat

Apply the merge to the data

	word	count	Current merge table:
	cat	4	a t -> at
Apply the merge to the data	mat	5	m at -> mat
	mat s	2	c at -> cat
	mat e	3	
	at e	3	
	e at	2	

Count pairs of new tokens:	word	count	Current merge table:
at + e : 4	cat	4	a † -> at
mat + e : 3	mat	5	m at -> mat
mat + s : 2	mat s	2	c at -> cat
e + at : 2	mat e	3	
	at e	3	
	e at	2	

Count pairs of new tokens:	word	count	Current merge table:
mat + e : 3	cat	4	a † -> at
mat + s : 2	mat	5	m at -> mat
e + at : 2	mat s	2	c at -> cat
	mat e	3	at e -> ate
	ate	3	
	e at	2	

Count pairs of new tokens:	word	count	Current merge table:
mat + e : 3	cat	4	a t -> at
mat + s : 2	mat	5	m at -> mat
e + at: 2 Add the most	mat s	2	c at -> cat
frequent pair to the merge table	mat e	3	at e -> ate
	ate	3	mat e -> mate
	e at	2	

	word	count	Current merge table:
Apply the merge to the data	cat	4	a † -> at
	mat	5	m at -> mat
	mat s	2	c at -> cat
	► mat e	3	at e -> ate
	ate	3	mat e -> mate
	e at	2	

	word	count	Current merge table:
Apply the merge to the data	cat	4	a † -> at
	mat	5	m at -> mat
	mat s	2	c at -> cat
	► mate	3	at e -> ate
	ate	3	mat e -> mate
	e at	2	

	word	count	Current merge table:
Reached maximum	cat	4	a t -> at
number of merges	mat	5	m at -> mat
	mat s	2	c at -> cat
stop	mate	3	at e -> ate
	ate	3	mat e -> mate
	e at	2	

After training, we are left with a vocabulary and a merge tables (ordered set of merges)

The algorithm starts with segmenting a word into a sequence of characters. After that, it iteratively makes the following two steps until no merge it possible:

- among all possible merges at this step, find the highest merge in the table (highest -> more frequent);
- apply this merge.

hyphens are possible merges

u-n-r-e-l-a-t-e-d

hyphens are possible merges u-n-r-e-l-a-t-e-d the highest merge: merge with the highest priority (the highest in the merge table)

u-n-r-e-l-a-t-e-d ↓ merge

u-n-<mark>r-e</mark>-l-a-t-e-d u-n <u>re</u>-l-a-t-e-d

u-n-r-e-l-a-t-e-d u-n <u>re</u>-l-a-t-e-d

u-n-r-e-l-a-t-e-d u-n <u>re</u>-l-a-t-e-d

pick the highest merge

u-n-<mark>r-e</mark>-l-a-t-e-d u-n <u>re</u>-l-a-t-e-d

pick the highest merge

u-n-r-e-l-a-t-e-d u-n <u>re</u>-l-a-t-e-d ↓ merge

u-n-<mark>r-e</mark>-l-a-t-e-d u-n <u>re</u>-l-<u>a-</u>t-e-d u-n re-l-<u>at</u>-e-d

u-n-r-e-l-a-t-e-d u-n <u>re-l-a-t-</u>e-d u-n re-l-<u>at</u>-e-d pick the highest merge

u-n-r-e-l-a-t-e-d u-n <u>re-l-a-t-e-d</u> u-n re-l-<u>at</u>-e-d pick the highest merge

u-n-r-e-l-a-t-e-d u-n <u>re</u>-l-a-t-e-d u-n re-l-<u>at</u>-e-d ↓ merge

u-n-r-e-l-a-t-e-d u-n <u>re</u>-l-a-t-e-d u-n re-l-<u>at</u>-e-d ↓ merge

u-n-r-e-l-a-t-e-d u-n <u>re-l-a-t-e-d</u> u-n re-l-<u>at-e-d</u> u-n re-l-at-<u>ed</u> pick the highest merge

u-n-r-e-l-a-t-e-d u-n <u>re-l-a-t-e-d</u> u-n re-l-<u>at-e-d</u> u-n re-l-at-<u>ed</u> pick the highest merge

u-n-r-e-l-a-t-e-d u-n <u>re-l-a-t-</u>e-d u-n re-l-<u>at</u>-e-d u-n re-l-at-<u>ed</u> <u>werge</u>

u-n-r-e-l-a-t-e-d u-n <u>re-l-a-t-</u>e-d u-n re-l-<u>at-</u>e-d u-n re-l-at-<u>ed</u> <u>un</u> re-l-at-ed

u-n-r-e-l-a-t-e-d u-n <u>re-l-a-t-</u>e-d u-n re-l-<u>at-</u>e-d <u>u-n re-l-at-ed</u> <u>un re-l-at-ed</u> pick the highest merge

u-n-r-e-l-a-t-e-d u-n <u>re-l-a-t-e-d</u> u-n re-l-<u>at-e-d</u> u-n re-l-at-<u>ed</u> <u>un re-l-at-ed</u> pick the highest merge

u-n-r-e-l-a-t-e-d u-n <u>re-l-a-t-</u>e-d u-n re-l-<u>at-</u>e-d <u>u-n re-l-at-ed</u> <u>un re-l-at-ed</u> <u>merge</u>

u-n-r-e-l-a-t-e-d u-n <u>re-l-a-t-e-d</u> u-n re-l-<u>at-e-d</u> <u>u-n re-l-at-ed</u> <u>un re-l-at-ed</u> un re-l-<u>at-ed</u>

u-n-r-e-l-a-t-e-d u-n <u>re-l-a-t-e-d</u> u-n re-l-<u>at-e-d</u> <u>u-n re-l-at-ed</u> <u>un re-l-at-ed</u> un re-l-<u>at-ed</u>

u-n-r-e-l-a-t-e-d u-n <u>re-l-a-t-</u>e-d u-n re-l-<u>at-</u>e-d <u>u-n re-l-at-ed</u> <u>un re-l-at-ed</u> un <u>re-l-at-ed</u> un <u>re-l-ated</u> pick the highest merge

u-n-r-e-l-a-t-e-d u-n <u>re-l-a-t-e-d</u> u-n re-l-<u>at-e-d</u> <u>u-n re-l-at-ed</u> <u>un re-l-at-ed</u> un <u>re-l-at-ed</u>
u-n-r-e-l-a-t-e-d u-n <u>re-l-a-t-e-d</u> u-n re-l-<u>at-e-d</u> <u>u-n re-l-at-ed</u> <u>un re-l-at-ed</u> un <u>re-l-at-ed</u>

u-n-r-e-l-a-t-e-d u-n <u>re-l-a-t-e-d</u> u-n re-l-<u>at-e-d</u> u-n re-l-at-<u>ed</u> <u>un re-l-at-ed</u> un <u>re-l-ated</u> un <u>rel</u>-ated

u-n-r-e-l-a-t-e-d u-n <u>re-l-a-t-</u>e-d u-n re-l-<u>at-</u>e-d u-n re-l-at-<u>ed</u> un re-l-at-ed un <u>re-l-ated</u> un <u>rel-ated</u> <u>pick the</u> highest merge

u-n-r-e-l-a-t-e-d u-n re-l-at-e-d u-n re-l-at-e-d u-n re-l-at-ed un re-l-at-ed un re-l-ated un rel-ated bighest merge

u-n-r-e-l-a-t-e-d u-n <u>re-l-a-t-e-d</u> u-n re-l-<u>at-e-d</u> u-n re-l-at-<u>ed</u> un re-l-at-ed un re-l-<u>ated</u> un <u>rel-ated</u>

u-n-r-e-l-a-t-e-d u-n <u>re-l-a-t-e-d</u> u-n re-l-<u>at-e-d</u> u-n re-l-at-<u>ed</u> <u>un re-l-at-ed</u> un <u>re-l-ated</u> un <u>rel-ated</u> un <u>rel-ated</u> un <u>related</u>

u-n-r-e-l-a-t-e-d u-n re-l-at-e-d u-n re-l-at-e-d u-n re-l-at-ed un re-l-at-ed un re-l-ated un rel-ated un rel-ated un related No merges un@@ related

BPE – drawbacks / discussion

- The induced segmentation does not align with linguistic morphological boundaries.
- Frequent words that share the same morphemes (e.g., roots) are segmented differently from less frequent words.
- The segmentation does not directly correspond to the information content of a token or the computational effort required in a neural model.

What can we do about it?

Summary

- Done with inference algorithms (greedy, beam-search, sampling, temperature,...)
- Evaluating text generation (e.g., BLEU)
- Subword tokenization