
Transformer (part 2)

Recap: Transformer

“Attention is all you need”

Recap: Encoder-decoder attention vs self- attention

aka “cross-

attention”

Recap: QKV Attention

Recap: Multi-Head Attention

Each heads performs

independent QKV

attention (with their own

head-specific parameters,

i.e. Wk, Wq, Wv matrices)

Parallel computation for one head

From Jurafsky and Martin

Parallel computation for one head

From Jurafsky and Martin

Transformer architecture: encoder-decoder

Transformer architecture: language model

aka decoder-only model

Feedforward blocks

Residual connections (Recap from 2 weeks ago)

Recall, we considered them earlier

Enable learning of deep architectures (i.e. many layers)

With residuals, non-adjacent modules ‘communicate’

between each other through the ‘residual channel’ or a

module can directly send information to the top level

One layer – residual stream for a token

Image from Xiong et al., 2020

https://arxiv.org/pdf/2002.04745.pdf

Heads move information across token-specific residual streams

From Jurafsky & Martin

Residual streams

Representation of a token across layers

Representations of tokens is, are, were, was from a lot of sentences and

visualized their t-sne projections (on the x-axis are layers).

Transformer

LM

Encoder in an

MT model

(Eng to Rus)

Representation of a token across layers

Representations of tokens is, are, were, was from a lot of sentences and

visualized their t-sne projections (on the x-axis are layers).

Transformer

LM

Representations of

different token types in

bottom layer are very

distinct

Encoder in an

MT model

(Eng to Rus)

Representation of a token across layers

Representations of tokens is, are, were, was from a lot of sentences and

visualized their t-sne projections (on the x-axis are layers).

Transformer

LM

In MT encoder distinct

‘clusters’ for was appear in

higher layers

Any thoughts why?

Encoder in an

MT model

(Eng to Rus)

Representation of a token across layers

Representations of tokens is, are, were, was from a lot of sentences and

visualized their t-sne projections (on the x-axis are layers).

Transformer

LM

In MT encoder distinct

‘clusters’ for was appear in

higher layers

Any thoughts why?

The encoder refines the token representation to
provide information for translation/decode. E.g., "
was may be translated differently depending on

the grammatical gender of its subject and other
contextual factors.

Encoder in an

MT model

(Eng to Rus)

Representation of a token across layers

Representations of tokens is, are, were, was from a lot of sentences and

visualized their t-sne projections (on the x-axis are layers).

Transformer

LM

In LM, the tokens get

‘mixed’ in higher layersAny thoughts why?

Encoder in an

MT model

(Eng to Rus)

Representation of a token across layers

The information of a token is refined

due to the two roles it plays:

• predicting the output label from a

current token representation;

• maintaining information necessary

to build representations of other

tokens.

So, in top layers of a LM, the token

representation focuses primarily on

what the next token is likely to be rather

than what the current token is

 - is the mean of a token representation hk (across its dimension)

Layer Normalization

LayerNorm improves

training stability (but there are

alternatives to LayerNorm)

- is the standard deviation, computed analogously

scale and bias are trainable parameters

Dropout

• A regularization technique that randomly drops units (neurons)

during training.

• Helps prevent overfitting by reducing co-adaptation of neurons.

• Active only during training; during inference, all neurons are

used with scaled weights.

Dropout: formally

Each neuron is retained with prob p, otherwise it is set to 0.

where:

 is the input activation

 is a binary mask sampled from a Bernoulli distribution with

 is the resulting activation after dropout

At test time, the layer is rescaled to have the same magnitude:

In Transformer, Dropout can be used after MLP and Attention Layers

Positional Encoding

Transformers (unlike RNNs) do not have a notion of order of

the tokens. To incorporate information about the order, we

use ‘position embeddings’

How to represent position as vectors?

Learnable position embeddings: similarly to word vectors, a

unique vector is learned for each position.

Issues with this approach?

How to represent position as vectors?

Learnable position embeddings: similarly to word vectors, a

unique vector is learned for each position.

Issues with this approach?

• Poor generalization to long sequences:

• Embeddings for high positions are oundertrained, leading to poor

performance on long contexts.

• Not suitable for long-context Transformers:

• modern applications require handling thousands of tokens.

• Incorrect inductive biases:

• In NLP, relative position matters more than absolute one.

• E.g.: The model should behave for token pairs (20, 25) and (140,

145) but completely different emb parameters determine the

relations

How to represent position as vectors?

Fixed periodic functions to compute position embeddings

For example, the original paper, they proposed the sinusoid

waves

i is the index of the embedding (runs from 0 to 2 i + 2)

The intuition

Suppose you want to represent a number in binary format

From https://kazemnejad.com/

You can spot the rate of change between different bits. The least

significant bit is alternating on every number, the second-lowest bit

is alternating (‘rotating’) on every two numbers, and so on.

The sinusoidal waves are just continuous counterpart

The sinusoidal waves

From https://kazemnejad.com/

Why sinusoidal waves?

Better generalization to long sequences

• Unlike learned embeddings, they extend naturally to positions

beyond the training range.

Encourage relative positioning (but does not do it so great)

• the difference between positions is easily computable for a pair of

tokens due to the periodic nature of sine and cosine.

• the relative position between tokens 20 25 and 140 145 is

encoded in a similar way (kind of), helping the model generalize

better.

No extra parameters to learn and store

• These embeddings do not require additional training

More modern approaches

Recent generations of Transformers continue to use periodic functions but in

different ways.

Rotary Positional Embeddings (RoPE) encode positional information by

rotating token embeddings rather than adding positional vectors. So they

also more explicit in encoding only the relational informatin (i.e. the distance

between tokens)

RoPE’s self-attention computation is function f(xi, i, xj, j) such that:

 f(xi, i, xj, j) = g(xi, xj, i - j),

We should now know every block!

Interpretability

Recall, individual heads focus on different tokens (have

their individual attention modules)

It turns out many heads have interpretable roles, the are

Position Heads which look into adjacent positions

Encoder of a

machine translation

Transformer model Voita et al., ACL 2019

https://arxiv.org/pdf/1905.09418.pdf

Interpretability

Syntactic heads:

verb->subject

Encoder of a

machine translation

Transformer model Voita et al., ACL 2019

https://arxiv.org/pdf/1905.09418.pdf

Interpretability

verb->object
Encoder of a

machine translation

Transformer model Voita et al., ACL 2019

Syntactic heads:

https://arxiv.org/pdf/1905.09418.pdf

Heads roles in Encoder

(EN-RU) (EN-FR)

(EN-DE)

Relevance Functions

Relevance Functions

Relevance Functions

Relevance is estimated importance of the head, the heads in this

plots are sorted according to their estimated importance (in each

row)

The important heads in MT encoders are specialized.

Do we need all the rest?

Original model

Our modification: pruning heads

Now optimize only gi with original cross-entropy loss on

translation data + a loss pushing as many gi to exactly 0.

Pruned heads and BLEU score

EN-RU

Pruned heads and BLEU score

10 out of 48 heads,

29.45 out of 29.6 BLEU

EN-RU

Pruned heads and BLEU score

4 out of 48 heads,

32.15 out of 32.4 BLEU

EN-RU

What are the functions of alive heads?

What are the functions of alive heads?

2/3 of heads are

pruned, but all the

functions are still alive

What are the functions of alive heads?

Heads take

several functions

What are the functions of alive heads?

Functions “drift”

to other heads

Key findings were

• Only a small subset of encoder heads are important for

translation;

• Many important heads have one or more specialized and

interpretable functions in the model;

In Large Language Models, things are a bit less crisp, but there

are still some components which are interpretable:

• Heads retrieving relevant information from the context

• Heads tracking entities across texts

• …

Interpretability: model agnostic approaches

You can ask: what a certain model component represent?

Diagnostic classifiers (aka probing):

• feed data to a network and get vector representations of this data,

• train a classifier to predict some (linguistic) labels from these

representations (the model itself is frozen),

• use the classifier's accuracy as a measure of how well

representations encode labels.

Interpretability: model agnostic approaches

Issues with this idea, and modifications of basic probing:

• Is the classifier learning the linguistic phenomenon, or is

it the model that encodes it? (Voita and Titov, 2020)

• Even if the phenomenon is encoded, does the model

actually use it? Can we intervene in the representation to

influence what is generated? (Vig et al, 2020)

https://aclanthology.org/2020.emnlp-main.14.pdf
https://arxiv.org/pdf/2004.12265

Take-aways / notes

• We have a solid understanding of the Transformer model (well,

almost!)

• Attention is the key component (make sure you understand it!), but

other elements – residuals, MLPs, position embeddings, layer

normalization and even droput -- also play important roles.

• Attention heads can sometimes learn specialized, interpretable

functions.

• As models become more complex and successful, the demand for

explainable AI continues to grow.

• In many upcoming lectures, the Transformer will serve as the

backbone, but the focus will shift to its applications, training

strategies, and more.

• Lab 3 deals with Transformer, you will be training it from scratch

	Slide 1
	Slide 2: Recap: Transformer
	Slide 3: Recap: Encoder-decoder attention vs self- attention
	Slide 4: Recap: QKV Attention
	Slide 5: Recap: Multi-Head Attention
	Slide 6: Parallel computation for one head
	Slide 7: Parallel computation for one head
	Slide 8: Transformer architecture: encoder-decoder
	Slide 9: Transformer architecture: language model
	Slide 10: Feedforward blocks
	Slide 11: Residual connections (Recap from 2 weeks ago)
	Slide 12: One layer – residual stream for a token
	Slide 13: Heads move information across token-specific residual streams
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Layer Normalization
	Slide 21: Dropout
	Slide 22: Dropout: formally
	Slide 23: Positional Encoding
	Slide 24: How to represent position as vectors?
	Slide 25: How to represent position as vectors?
	Slide 26: How to represent position as vectors?
	Slide 27: The intuition
	Slide 28: The sinusoidal waves
	Slide 29: Why sinusoidal waves?
	Slide 30: More modern approaches
	Slide 31: We should now know every block!
	Slide 32: Interpretability
	Slide 33: Interpretability
	Slide 34: Interpretability
	Slide 35: Heads roles in Encoder
	Slide 36: Original model
	Slide 37: Our modification: pruning heads
	Slide 38: Pruned heads and BLEU score
	Slide 39: Pruned heads and BLEU score
	Slide 40: Pruned heads and BLEU score
	Slide 41: What are the functions of alive heads?
	Slide 42: What are the functions of alive heads?
	Slide 43: What are the functions of alive heads?
	Slide 44: What are the functions of alive heads?
	Slide 45: Key findings were
	Slide 46: Interpretability: model agnostic approaches
	Slide 47: Interpretability: model agnostic approaches
	Slide 48: Take-aways / notes

