
Transformer (part 2)



Recap: Transformer

“Attention is all you need”



Recap: Encoder-decoder attention vs self- attention

aka “cross-

attention”



Recap: QKV Attention



Recap: Multi-Head Attention

Each heads performs 

independent QKV 

attention (with their own 

head-specific parameters, 

i.e. Wk, Wq, Wv matrices)



Parallel computation for one head

From Jurafsky and Martin 



Parallel computation for one head

From Jurafsky and Martin 



Transformer architecture: encoder-decoder



Transformer architecture:  language model

aka decoder-only model



Feedforward blocks



Residual connections (Recap from 2 weeks ago)

Recall, we considered them earlier

Enable learning of deep architectures (i.e. many layers)

With residuals, non-adjacent modules ‘communicate’ 

between each other through the ‘residual channel’ or a 

module can directly send information to the top level



One layer – residual stream for a token

Image from Xiong et al., 2020

https://arxiv.org/pdf/2002.04745.pdf


Heads move information across token-specific residual streams

From Jurafsky & Martin

Residual streams



Representation of a token across layers

Representations of tokens is, are, were, was from a lot of sentences and 

visualized their t-sne projections (on the x-axis are layers).
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Representation of a token across layers

Representations of tokens is, are, were, was from a lot of sentences and 

visualized their t-sne projections (on the x-axis are layers).
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LM

Representations of 

different token types in 

bottom layer are very 

distinct

Encoder in an 

MT model 

(Eng to Rus)
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visualized their t-sne projections (on the x-axis are layers).
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‘clusters’ for was appear in 

higher layers
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Representation of a token across layers

Representations of tokens is, are, were, was from a lot of sentences and 

visualized their t-sne projections (on the x-axis are layers).

Transformer 

LM

In MT encoder distinct 

‘clusters’ for was appear in 

higher layers

Any thoughts why? 

The encoder refines the token representation to 
provide information for translation/decode. E.g., " 
was may be translated differently depending on 

the grammatical gender of its subject and other 
contextual factors.

Encoder in an 

MT model 

(Eng to Rus)



Representation of a token across layers

Representations of tokens is, are, were, was from a lot of sentences and 

visualized their t-sne projections (on the x-axis are layers).

Transformer 

LM

In LM, the tokens get 

‘mixed’ in higher layersAny thoughts why? 

Encoder in an 

MT model 

(Eng to Rus)



Representation of a token across layers

The information of a token is refined 

due to the two roles it plays:  

• predicting the output label from a 

current token representation;

• maintaining information necessary 

to build representations of other 

tokens.

So, in top layers of a LM, the token 

representation focuses primarily on 

what the next token is likely to be rather 

than what the current token is



        - is the mean of a token representation hk (across its dimension)

Layer Normalization

LayerNorm improves 

training stability (but there are 

alternatives to LayerNorm)

- is the standard deviation, computed analogously

scale and bias are trainable parameters



Dropout

•  A regularization technique that randomly drops units  (neurons) 

during training.

• Helps prevent overfitting by reducing co-adaptation of neurons.

• Active only during training; during inference, all neurons are 

used with scaled weights.



Dropout: formally

Each neuron is retained with prob p, otherwise it is set to 0.

where:

      is the input activation

      is a binary mask sampled from a Bernoulli distribution with

      is the resulting activation after dropout

At test time, the layer is rescaled to have the same magnitude: 

In Transformer,  Dropout can be used after MLP and Attention Layers



Positional Encoding

Transformers (unlike RNNs) do not have a notion of order of 

the tokens.   To incorporate information about the order, we 

use ‘position embeddings’ 



How to represent position as vectors?

Learnable position embeddings: similarly to word vectors, a 

unique vector is learned for each position.

Issues with this approach?



How to represent position as vectors?

Learnable position embeddings: similarly to word vectors, a 

unique vector is learned for each position.

Issues with this approach?

•   Poor generalization to long sequences:

• Embeddings for high positions are oundertrained, leading to poor 

performance on long contexts.

•  Not suitable for long-context Transformers:

• modern applications require handling thousands of tokens.

•  Incorrect inductive biases:

• In NLP, relative position matters more than absolute one.

• E.g.: The model should behave for token pairs (20, 25) and (140, 

145) but completely different emb parameters determine the 

relations



How to represent position as vectors?

Fixed periodic functions to compute position embeddings

For example, the original paper, they proposed the sinusoid 

waves  

i is the index of the embedding (runs from 0 to 2 i + 2)



The intuition

Suppose you want to represent a number in binary format

From https://kazemnejad.com/

You can spot the rate of change between different bits. The least 

significant bit is alternating on every number, the second-lowest bit 

is alternating (‘rotating’) on every two numbers, and so on.

The sinusoidal waves are just continuous counterpart



The sinusoidal waves

From https://kazemnejad.com/



Why sinusoidal waves?

Better generalization to long sequences

• Unlike learned embeddings, they extend naturally to positions 

beyond the training range.

Encourage relative positioning (but does not do it so great)

• the difference between positions is easily computable for a pair of 

tokens due to the periodic nature of sine and cosine.

• the relative position between tokens 20  25 and 140  145 is 

encoded in a similar way (kind of), helping the model generalize 

better.

No extra parameters to learn and store

•  These embeddings do not require additional training



More modern approaches

Recent generations of Transformers continue to use periodic functions but in 

different ways. 

 

Rotary Positional Embeddings (RoPE) encode positional information by 

rotating token embeddings rather than adding positional vectors. So they 

also more explicit in encoding only the relational informatin (i.e. the distance 

between tokens)

RoPE’s  self-attention computation is function f(xi, i, xj, j) such that:

  f(xi, i, xj, j) = g(xi, xj, i - j), 



We should now know every block!



Interpretability

Recall, individual heads focus on different tokens (have 

their individual attention modules)

It turns out many heads have interpretable roles, the are 

Position Heads which look into adjacent positions

Encoder of a 

machine translation 

Transformer model Voita et al., ACL 2019

https://arxiv.org/pdf/1905.09418.pdf


Interpretability

Syntactic heads:

verb->subject

Encoder of a 

machine translation 

Transformer model Voita et al., ACL 2019

https://arxiv.org/pdf/1905.09418.pdf


Interpretability

verb->object
Encoder of a 

machine translation 

Transformer model Voita et al., ACL 2019

Syntactic heads:

https://arxiv.org/pdf/1905.09418.pdf


Heads roles in Encoder

(EN-RU) (EN-FR)

(EN-DE)

Relevance Functions

Relevance Functions

Relevance Functions

Relevance is estimated importance of the head, the heads in this 

plots are sorted according to their estimated importance (in each 

row)

The important heads in MT encoders are specialized.

Do we need all the rest?



Original model



Our modification: pruning heads

Now optimize only gi  with original cross-entropy loss on 

translation data + a loss pushing as many gi to exactly 0.



Pruned heads and BLEU score

EN-RU



Pruned heads and BLEU score

10 out of 48 heads,

29.45 out of 29.6 BLEU

EN-RU



Pruned heads and BLEU score

4 out of 48 heads,

32.15 out of 32.4 BLEU

EN-RU



What are the functions of alive heads?



What are the functions of alive heads?

2/3 of heads are 

pruned, but all the 

functions are still alive



What are the functions of alive heads?

Heads take 

several functions



What are the functions of alive heads?

Functions “drift” 

to other heads



Key findings were

•  Only a small subset of encoder heads are important for 

translation; 

• Many important heads have one or more specialized and 

interpretable functions in the model; 

In Large Language Models, things are a bit less crisp, but there 

are still some components which are interpretable:

• Heads retrieving relevant information from the context

• Heads tracking entities across texts

• …



Interpretability: model agnostic approaches

You can ask: what a certain model component represent?

Diagnostic classifiers (aka probing):

• feed data to a network and get vector representations of this data,

• train a classifier to predict some (linguistic) labels from these 

representations (the model itself is frozen),

• use the classifier's accuracy as a measure of how well 

representations encode labels.

 



Interpretability: model agnostic approaches

Issues with this idea, and modifications of basic probing:

• Is the classifier learning the linguistic phenomenon, or is 

it the model that encodes it? (Voita and Titov, 2020)

• Even if the phenomenon is encoded, does the model 

actually use it? Can we intervene in the representation to 

influence what is generated? (Vig et al, 2020)

https://aclanthology.org/2020.emnlp-main.14.pdf
https://arxiv.org/pdf/2004.12265


Take-aways / notes

• We have a solid understanding of the Transformer model (well, 

almost! )

• Attention is the key component (make sure you understand it!), but 

other elements – residuals, MLPs, position embeddings, layer 

normalization and even droput -- also play important roles.

• Attention heads can sometimes learn specialized, interpretable 

functions.

• As models become more complex and successful, the demand for 

explainable AI continues to grow.

• In many upcoming lectures, the Transformer will serve as the 

backbone, but the focus will shift to its applications, training 

strategies, and more.

• Lab 3 deals with Transformer, you will be training it from scratch
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