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Last few words about sequence modeling
Basics of Syntax, Context-Free Grammars
Classes of Syntactic Parsing Algorithms

Start with the CKY algorithm



» Definition:

Input: sequences of variable length x = (71, 22,...,25),2; € X

Output: every position is associated with a label y = (y1,¥2,..., Y1), ¥ € {1,...,N}
» An example:

Part-of-speech tagging

X = John carried a tin can
y = NNP VBD DT NN NN



» Using Viterbi, we can find the best tags for a
sentence (decoding), and get P(y, x|6) with HMM

or P(y | x) if you use the conditional modeling

» We might also want to

» compute the likelihood, i.e., the probability of a

sentence regardless of its tags (a language
model!) P(x|0)

» learn the best set of parameters 4 given only
an unannotated corpus of sentences.



» From the probability theory we know
P(z|0) = >_, P(z,y|0)

» But there are an exponential number of sequences y

» Again, by computing and storing partial results, we
can solve efficiently.
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Initialization: V; = GSTART,jbjz1, J=1,...,N;
Recomputation: ”Ut (Z ’Ut 1 Z-) bjxt, J=1,..., N, t=2,...,|x|
: |X|+1 x|
Final: Vsrop = %: v, Qi STOP
eXp (Zt 1 9 (%, Y1, yt)) This is also the algorithm used to
P(y | x) = compute the denominator for Markov

Z » €XP (Zt 1 9 (x7 3/2—17 yg)) Random Field, we considered last time



—Lastfew-words-about sequence-modeling
» Basics of Syntax, Context-Free Grammars
» Classes of Syntactic Parsing Algorithms

» Start with the CKY algorithm



» We've seen various ways to model word behaviour.
Bag-of-words models: ignore word order entirely
N-gram models: capture a fixed-length history to predict word sequences.
HMMs: also capture fixed-length history, using latent variables.

RNNs/Transformers: few restrictions, reliance on flexibility neural

networks

» We will see how provide linguistic priors into models



» The form of one word often depends on (agrees with) another,
even when arbitrarily long material intervenes.

Sam/ sleeps/ soundly
Sam, who is my cousin, sleeps soundly
s often stay at my house and soundly
Sam, the man with red hair who 1s my cousin, sleeps soundly

» We want models that can capture these dependencies.



» We may also want to capture substitutability at the phrasal
level.

POS categories indicate which words are substitutable. For
example, substituting adjectives:

I saw a red cat
I saw a former cat
I saw a billowy cat

Phrasal categories indicate which phrases are substitutable. For
example, substituting noun phrase:

This is one example
DOgS sleep Soundly of “constituency

My next-door neighbours sleep soundly test”
Green 1deas sleep soundly




» Only constituents (of the same type) can be coordinated
using conjunction words like and, or, and but

» Pass the test:

Her friends from Peru went to the show.
Mary and her friends from Peru went to the show.

Should I go through the tunnel?
Should | go through the tunnel and over the bridge?

» Fail the test

We peeled the potatoes.
*We peeled the and washed the potatoes.



» Only a constituent can appear in the frame “ is/are
who/what/where/when/why/how ...”

» Pass the test:

They put the boxes in the basement.
In the basement is where they put the boxes.

» Fail the test

They put the boxes in the basement.
*Put the boxes is what they did in the basement.



» A theory of syntax should explain which sentences are well-
formed (grammatical) and which are not.

Note that well-formed is distinct from meaningful.
Famous example from Chomsky:

Colorless green ideas sleep furiously

» (Even if the reason we care about syntax is mainly for
interpreting meaning.)



» We'll look at one theory of syntax:

Constituency (aka phrase) structures

» A theory of syntax can be viewed as a model of language
behaviour. As with other models, we will look at
What the model can capture, and what it cannot.

Algorithms that provide syntactic analyses for sentences using
the model (i.e., syntactic parser).



S » Internal nodes correspond to phrases

NP VP S — a sentence
PN/\N V/\NP NP (Noun Phrase): My dog, a sandwich, lakes, ..
| | | N VP (Verb Phrase): ate a sausage, barked, ...

| PP (Prepositional phrases): with a friend, in a car, ...

My dog ate D N
|
a Sausage

» Nodes immediately above words are PoS tags

PN — pronoun
D — determiner
V —verb

N — noun

P — preposition



Context-Free Grammar

» Context-free grammar is a tuple of 4 elements G = (V. %, R, S)

e _
» Y - the set of terminals ‘

» R -the set of rules of the form X — Y7.Y5,....Y,,, where n > 0,
XeV,Y,eVux

» S is a dedicated start symbol



V ={S,VP,NP,PP,N,V, PN, P}

Y, = {girl, telescope, sandwich, I, saw, ate, with, in, a, the}

S ={S}
R :

S—- NP VP
VP -V

VP -V NP
VP —-VP PP

NP —- NP PP
NP —-D N
NP — PN

PP — P NP

Inner rules

(NP A girl) (VP ate a sandwich)

(V ate) (NP a sandwich)
(VP saw a girl) (PP with a telescope)

(NP a girl) (PP with a sandwich)
(D a) (N sandwich)

(P with) (NP with a sandwich)

Preterminal rules

N — girl

N — telescope
N — sandwich
PN — 1

V — saw

V — ate

P — with

P —n

D —a

D — the
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| S— NP VP ! N — girl

N — telescope
VP=V N 5 sandwich

VP -V NP
VP VP PP PN =1
V — saw
NP -+ NP PP V — ate
NP D N P — with
NP — PN P s in
D —a

PP P NP
D — the
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NP

VP

S—- NP VP

VP =V

VP -V NP

VP —-VP PP

NP —- NP PP

N — girl

N — telescope
N — sandwich
PN — 1

V — saw

V — ate

P — with
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NP VP
|
PN

S— NP VP

VP =V
VP -V NP
VP —-VP PP

NP —- NP PP
NP —-D N
NP — PN

PP —P NP

N — girl
N — telescope
N — sandwich
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NP VP

PN

S— NP VP

VP =V

N — girl
N — telescope

_____________________ . N — sandwich

. VPV NP
VP VP PP

NP —- NP PP
NP —-D N
NP — PN

PP —P NP

PN — 1
V — saw
V — ate
P — with
P —in
D —a
D — the
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NP

PN

VP

T

\Y NP

S— NP VP

VP =V
VP -V NP
VP —-VP PP

NP —- NP PP
NP —-D N
NP — PN

PP —P NP

N — girl
N — telescope
N — sandwich
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NP VP
| /\
PN

S— NP VP

N — girl
N — telescope

VP =V N — sandwich

VP -V NP
VP —-VP PP

PN — 1
V — saw
V — ate
P — with
P —in
D —a
D — the
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NP VP
| /\
PN
| VvV NP
I | /\
Saw

NP PP

S— NP VP

N — girl
N — telescope

VP =V N — sandwich

VP -V NP
VP —-VP PP

NP —- NP PP

PN — 1
V — saw
V — ate
P — with
P —in
D —a
D — the
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NP VP
| /\
PN
| V NP
I | /\
AW NP PP

S— NP VP

VP =V
VP -V NP
VP —-VP PP

NP —- NP PP
NP —-D N
NP — PN

PP —P NP

N — girl

N — telescope
N — sandwich
PN — 1

V — saw

V — ate

P — with

P —in

D —a

D — the

27



S— NP VP N — girl
N — telescope

VP =V N — sandwich
VP —-V NP
PN I
VP —-VP PP —

S V — saw
NP/\VP NP — NP PP V — ate
I NP —D N P — with

oV NP NP — PN P —sin
I |
saw /\ D —a
NP PP PP P NP
P NP
| | | P
a gitl  with D N

a telescope

CFG defines both:
- a set of strings (a language)

- structures used to represent sentences (constituent trees)



» Some sentences have more than one parse: structural
ambiguity.

S S
NP VP NP VP
- o by
ro
Co Pro ' NP vp
he P N | | |
>aw ’ro | he saw Pro V
her duck |

her duck

» Here, the structural ambiguity is caused by PoS ambiguity in
several of the words. (Both are types of syntactic ambiguity.)
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» Some sentences have structural ambiguity even without
part-of-speech ambiguity. This is called attachment
ambiguity.

Depends on where different phrases attach in the tree.
Different attachments have different meanings:

I saw a girl with a telescope
She ate the pi1zza on the floor
Good boys and girls get presents from Santa

» Next slide shows trees for the first example: prepositional
phrase (PP) attachment ambiguity.
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» Prepositional phrase attachment ambiguity

VP

S

P

NP

PP
D

|
a

NP

PP
D

|
a




Why context-free?
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Why context-free?

ate D N
| |

a sandwich

bark

A

often
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Why context-free?

ate D N |
| |

sandwich




Recognition problem: does the sentence belong to the language
defined by CFG?

That is:is there a derivation which yields the sentence?

Parsing problem: what is a (most plausible) derivation (tree)
corresponding the sentence?

Parsing problem encompasses the recognition problem

35



Today

» Basics of Syntax and Context-Free Grammars
» Classes of Syntactic Parsing Algorithms

» Start with the CKY algorithm
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» Goal: compute the structure(s) for an input string given a
grammar.

(we may want to use the structure to interpret meaning)
As usual, ambiguity is a huge problem.

» For correctness: need to find the right structure to get the
right meaning.

» For efficiency: searching all possible structures can be very
slow

want to use parsing for large-scale language tasks
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» A typical tree from a standard dataset (Penn treebank WSY))

NKP NN

Canadian Ut

itles  had

1988 rovenue of

cs

NC,

1.16  billion ,

mainly from its

PRF

[from Michael
Collins slides]

P NNS PUNC.

tural gas and electric utility businessesin Al

derta whaemn the company serves about ll.m cusiomers .

Canadian Utilities had 1988 revenue of $ 1.16 billion , mainly from
its natural gas and electric utility businesses in Alberta , where the

company serves about 800,000 customers .
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All parsers have two fundamental properties:

» Directionality: the sequence in which the structures are
constructed.

Top-down: start with root category (S), choose expansions, build
down to words.

Bottom-up: build subtrees over words, build up to S.
Mixed strategies also possible (e.g., left corner parsers)

» Search strategy: the order in which the search space of
possible analyses is explored.

39



All parsers have two fundamental properties:

» Directionality: the sequence in which the structures are
constructed.

Top-down: start with root category (S), choose expansions, build
down to words.

Bottom-up: build subtrees over words, build up to S.
Mixed strategies also possible (e.g., left corner parsers)

» Search strategy: the order in which the search space of
possible analyses is explored.
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Start with S node.

Choose one of many
possible expansions.

Each of which has
children with many

possible expansions...

etc

top-down
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All parsers have two fundamental properties:

» Depth-first search: explore one branch of the search space
at a time, as far as possible. If this branch is a dead-end,
parser needs to backtrack.

» Breadth-first search: expand all possible branches in
parallel (or simulated parallel). Requires storing many
incomplete parses in memory at once.

» Best-first search: score each partial parse and pursue the
highest-scoring options first.

We will now consider a bottom-up parser which uses

dynamic programming to explore the space 4o



Today

» Basics of Syntax and Context-Free Grammars
» Classes of Syntactic Parsing Algorithms

» Start with the CKY algorithm
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» Cocke-Kasami-Younger algorithm
Independently discovered in late 60s / early 70s
» An efficient bottom-up parsing algorithm for CFGs

can be used both for the recognition and parsing problems

» Very important in NLP (and beyond)

» As we will see, it is generalizable to probabilistic modeling / PCFGs
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Constraints on the grammar

» The basic CKY algorithm supports only rules in the Chomsky Normal
Form (CNF):

o BTRIRIRETRmS—mSe
CTT smmesensoveve ooy
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» The basic CKY algorithm supports only rules in the Chomsky Normal

Form (CNF):
(C ) Unary preterminal rules, generation of words given PoS tags
C —xr D — the N — telescope

C — 0102
Binary inner rules (e.g.,S - NP VP, NP — D N)

» Any CFG can be converted to an equivalent CNF
Equivalent means that they define the same language
However (syntactic) trees will look differently

It is possible to address it but defining such transformations that allows for
easy reverse transformation
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Transformation to CNF form

» What one need to do to convert to CNF for

» Get rid of empty (aka epsilon) productions: C — ¢

» Get rid of unary rules: C — C;

» N-aryruless C—CyCy...C, (n>2)
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» Consider NP - DT NNP VBG NN
NP

DT NNP VBG NN

| | | |
the Dutch publishing group

» How do we get a set of binary rules which are equivalent?
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» Consider NP - DT NNP VBG NN
NP

DT NNP VBG NN

| | | |
the Dutch publishing group

» How do we get a set of binary rules which are equivalent?

NP — DT' X
X —+NNPY
Y - VBG NN

49



» Consider NP - DT NNP VBG NN
NP

DT NNP VBG NN

| | | |
the Dutch publishing group

» How do we get a set of binary rules which are equivalent?

NP — DT' X
X —+NNPY
Y - VBG NN

» A more systematic way to refer to new non-terminals
NP — DT QNP|DT
QNP|DT — NNP QNP|DI' NNP
QNP|IDI'NNP - VBG NN
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Transformation to CNF form: binarization

» Instead of binarizing tules we can binarize trees on preprocessing;

NP
DT NNP VBG NN
t1r|1€ Du|tch publi|shing gro|up
NP
DT QNP->_DT

|
the
NNP QNP-> _DT_NNP

| /\
Dutch  vBg NN

| |
publishing group



» Instead of binarizing tules we can binarize trees on preprocessing:

NP
DT NNP VBG NN
| | | |
the Dutch publishing group
DT QNP->_DT
|
the
NNP @QNP->_DT_NNP
|
Dutch
VBG @NP->_DT_NNP_VBG
|
pubhshmg NN
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» Basics of Syntax and Context-Free Grammars
» Classes of Syntactic Parsing Algorithms

» Started with the CKY algorithm — preparing the grammar

Next lectures(s):

» CKY algorithm

» Probabilistic parsing with PCFGs

» PCFG parsing beyond treebank grammars

» Neuralized PCFG algorithms
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