

Today

2

} Last few words about sequence modeling

} Basics of Syntax, Context-Free Grammars

} Classes of Syntactic Parsing Algorithms

} Start with the CKY algorithm

Recap: Sequence labeling problems

} Definition:

} Input: sequences of variable length

} Output: every position is associated with a label

} An example:

} Part-of-speech tagging

x = (x1, x2, . . . , x|x|), xi 2 X

y =

x = John carried a tin can .

NNP VBD DT NN NN .

y = (y1, y2, . . . , y|x|), yi 2 {1, . . . , N}

Back to generative modeling – HMMs, what else?

} Using Viterbi, we can find the best tags for a
sentence (decoding), and get with HMM

• or if you use the conditional modeling

} We might also want to

} compute the likelihood, i.e., the probability of a
sentence regardless of its tags (a language
model!)

} learn the best set of parameters given only
an unannotated corpus of sentences.

✓̂

Computing the likelihood

} From the probability theory we know

} But there are an exponential number of sequences y

} Again, by computing and storing partial results, we
can solve efficiently.

N

V

M

0

0

0

0

0

0

0

0

0

0

0.005

3 · 10�5

4.5 · 10�6

2.25 · 10�7

1.35 · 10�8

4.5 · 10�10

John1 carried2 a3 tin4 can5

final

t
i

D 0 0 00

9 · 10�11

Viterbi

v1i = a$ibi,x1 , i = 1, . . . , Nv1i = a$ibi,x1 , i = 1, . . . , NInitialization:

Recomputation:

Final: v|x|+1
STOP

= max
i

v|x|
i

ai,STOP

v1j = aSTART,jbj,x1 , j = 1, . . . , N ;

vtj =
⇣
max

i
vt�1
i aij

⌘
bj,xt , j = 1, . . . , N, t = 2, . . . , |x|� 1

N

V

M

0

0

0

0

0

0

0

0

0

0

0.005

3 · 10�5

4.5 · 10�6

2.25 · 10�7

1.35 · 10�8

4.5 · 10�10

John1 carried2 a3 tin4 can5

final

t
i

D 0 0 00

9 · 10�11

Forward algorithm

v1i = a$ibi,x1 , i = 1, . . . , Nv1i = a$ibi,x1 , i = 1, . . . , NInitialization:

Recomputation:

Final: v|x|+1
STOP

= max
i

v|x|
i

ai,STOP

v1j = aSTART,jbj,x1 , j = 1, . . . , N ;

vtj =
⇣
max

i
vt�1
i aij

⌘
bj,xt , j = 1, . . . , N, t = 2, . . . , |x|� 1

N

V

M

0

0

0

0

0

0

0

0

0

0

0.005

3 · 10�5

4.5 · 10�6

2.25 · 10�7

1.35 · 10�8

4.5 · 10�10

John1 carried2 a3 tin4 can5

final

t
i

D 0 0 00

9 · 10�11

Forward algorithm

v1i = a$ibi,x1 , i = 1, . . . , Nv1i = a$ibi,x1 , i = 1, . . . , NInitialization:

Recomputation:

Final: v|x|+1
STOP

= max
i

v|x|
i

ai,STOP

v1j = aSTART,jbj,x1 , j = 1, . . . , N ;

vtj =
⇣
max

i
vt�1
i aij

⌘
bj,xt , j = 1, . . . , N, t = 2, . . . , |x|� 1

This is also the algorithm used to
compute the denominator for Markov
Random Field, we considered last time

Today

9

} Last few words about sequence modeling

} Basics of Syntax, Context-Free Grammars

} Classes of Syntactic Parsing Algorithms

} Start with the CKY algorithm

} We've seen various ways to model word behaviour.

} Bag-of-words models: ignore word order entirely

} N-gram models: capture a fixed-length history to predict word sequences.

} HMMs: also capture fixed-length history, using latent variables.

} RNNs/Transformers: few restrictions, reliance on flexibility neural

networks

} We will see how provide linguistic priors into models

Modelling word behaviour

} The form of one word often depends on (agrees with) another,
even when arbitrarily long material intervenes.

} We want models that can capture these dependencies.

Long-range dependencies

} We may also want to capture substitutability at the phrasal
level.
} POS categories indicate which words are substitutable. For

example, substituting adjectives:

} Phrasal categories indicate which phrases are substitutable. For
example, substituting noun phrase:

Phrasal categories

This is one example
of “constituency

test”

} Only constituents (of the same type) can be coordinated
using conjunction words like and, or, and but

} Pass the test:

} Fail the test

Example constituency tests: coordination

Her friends from Peru went to the show.
Mary and her friends from Peru went to the show.

Should I go through the tunnel?
Should I go through the tunnel and over the bridge?

We peeled the potatoes.
*We peeled the and washed the potatoes.

} Only a constituent can appear in the frame “____ is/are
who/what/where/when/why/how …”

} Pass the test:

} Fail the test

Example constituency tests: clefting

They put the boxes in the basement.
In the basement is where they put the boxes.

They put the boxes in the basement.
*Put the boxes is what they did in the basement.

} A theory of syntax should explain which sentences are well-
formed (grammatical) and which are not.

} Note that well-formed is distinct from meaningful.

} Famous example from Chomsky:

Colorless green ideas sleep furiously

} (Even if the reason we care about syntax is mainly for
interpreting meaning.)

Theories of syntax

} We'll look at one theory of syntax:
} Constituency (aka phrase) structures

} A theory of syntax can be viewed as a model of language
behaviour. As with other models, we will look at
} What the model can capture, and what it cannot.
} Algorithms that provide syntactic analyses for sentences using

the model (i.e., syntactic parser).

Theories of syntax

Constituent trees

NP (Noun Phrase): My dog, a sandwich, lakes, ..

VP (Verb Phrase): ate a sausage, barked, …

PP (Prepositional phrases): with a friend, in a car, …

S – a sentence

} Nodes immediately above words are PoS tags

} Internal nodes correspond to phrases

PN – pronoun
D – determiner
V – verb
N – noun
P – preposition

S

NP

PN

My

N

dog

VP

V

ate

NP

D

a

N

sausage

Context-Free Grammar

} Context-free grammar is a tuple of 4 elements

} - the set of non-terminals

} - the set of terminals

} - the set of rules of the form , where ,

,

} is a dedicated start symbol

In our case: phrase categories (VP, NP, ..) and
PoS tags (N, V, .. – aka preterminals)

G = (V,⌃, R, S)

V

⌃ Words

R n � 0

Yi 2 V [⌃X 2 V

X ! Y1, Y2, . . . , Yn

S

S ! NP V P

NP ! D N

NP ! PN

NP ! NP PP

PP ! P NP

. . .

N ! girl

N ! telescope

V ! saw

V ! eat

. . .

An example grammar

19

V = {S, V P,NP, PP,N, V, PN, P}

S = {S}

(NP A girl) (VP ate a sandwich)

⌃ = {girl, telescope, sandwich, I, saw, ate, with, in, a, the}

R :

(V ate) (NP a sandwich)
(VP saw a girl) (PP with a telescope)

(NP a girl) (PP with a sandwich)

(P with) (NP with a sandwich)

(D a) (N sandwich)

N ! girl

N ! telescope

N ! sandwich

PN ! I

V ! saw

V ! ate

P ! with

P ! in

D ! a

D ! the

Preterminal rules

S ! NP V P

V P ! V

V P ! V NP

V P ! V P PP

NP ! NP PP

NP ! D N

NP ! PN

PP ! P NP

Inner rules

CFGs

20

N ! girl

N ! telescope

N ! sandwich

PN ! I

V ! saw

V ! ate

P ! with

P ! in

D ! a

D ! the

S

NP

PN

I

VP

V

saw

NP

NP

D

a

N

girl

PP

P

with

NP

D

a

N

telescope

S ! NP V P

V P ! V

V P ! V NP

V P ! V P PP

NP ! NP PP

NP ! D N

NP ! PN

PP ! P NP

CFGs

21

N ! girl

N ! telescope

N ! sandwich

PN ! I

V ! saw

V ! ate

P ! with

P ! in

D ! a

D ! the

S

NP

PN

I

VP

V

saw

NP

NP

D

a

N

girl

PP

P

with

NP

D

a

N

telescope

S ! NP V P

V P ! V

V P ! V NP

V P ! V P PP

NP ! NP PP

NP ! D N

NP ! PN

PP ! P NP

CFGs

22

N ! girl

N ! telescope

N ! sandwich

PN ! I

V ! saw

V ! ate

P ! with

P ! in

D ! a

D ! the

S

NP

PN

I

VP

V

saw

NP

NP

D

a

N

girl

PP

P

with

NP

D

a

N

telescope

S ! NP V P

V P ! V

V P ! V NP

V P ! V P PP

NP ! NP PP

NP ! D N

NP ! PN

PP ! P NP

CFGs

23

N ! girl

N ! telescope

N ! sandwich

PN ! I

V ! saw

V ! ate

P ! with

P ! in

D ! a

D ! the

S

NP

PN

I

VP

V

saw

NP

NP

D

a

N

girl

PP

P

with

NP

D

a

N

telescope

S ! NP V P

V P ! V

V P ! V NP

V P ! V P PP

NP ! NP PP

NP ! D N

NP ! PN

PP ! P NP

CFGs

24

N ! girl

N ! telescope

N ! sandwich

PN ! I

V ! saw

V ! ate

P ! with

P ! in

D ! a

D ! the

S

NP

PN

I

VP

V

saw

NP

NP

D

a

N

girl

PP

P

with

NP

D

a

N

telescope

S ! NP V P

V P ! V

V P ! V NP

V P ! V P PP

NP ! NP PP

NP ! D N

NP ! PN

PP ! P NP

CFGs

25

N ! girl

N ! telescope

N ! sandwich

PN ! I

V ! saw

V ! ate

P ! with

P ! in

D ! a

D ! the

S

NP

PN

I

VP

V

saw

NP

NP

D

a

N

girl

PP

P

with

NP

D

a

N

telescope

S ! NP V P

V P ! V

V P ! V NP

V P ! V P PP

NP ! NP PP

NP ! D N

NP ! PN

PP ! P NP

CFGs

26

N ! girl

N ! telescope

N ! sandwich

PN ! I

V ! saw

V ! ate

P ! with

P ! in

D ! a

D ! the

S

NP

PN

I

VP

V

saw

NP

NP

D

a

N

girl

PP

P

with

NP

D

a

N

telescope

S ! NP V P

V P ! V

V P ! V NP

V P ! V P PP

NP ! NP PP

NP ! D N

NP ! PN

PP ! P NP

CFGs

27

N ! girl

N ! telescope

N ! sandwich

PN ! I

V ! saw

V ! ate

P ! with

P ! in

D ! a

D ! the

S

NP

PN

I

VP

V

saw

NP

NP

D

a

N

girl

PP

P

with

NP

D

a

N

telescope

S ! NP V P

V P ! V

V P ! V NP

V P ! V P PP

NP ! NP PP

NP ! D N

NP ! PN

PP ! P NP

CFGs

28

N ! girl

N ! telescope

N ! sandwich

PN ! I

V ! saw

V ! ate

P ! with

P ! in

D ! a

D ! the

S

NP

PN

I

VP

V

saw

NP

NP

D

a

N

girl

PP

P

with

NP

D

a

N

telescope

S ! NP V P

V P ! V

V P ! V NP

V P ! V P PP

NP ! NP PP

NP ! D N

NP ! PN

PP ! P NP

CFG defines both:

- a set of strings (a language)

- structures used to represent sentences (constituent trees)

Structural ambiguity

29

} Some sentences have more than one parse: structural
ambiguity.

} Here, the structural ambiguity is caused by PoS ambiguity in
several of the words. (Both are types of syntactic ambiguity.)

Structural ambiguity

30

} Some sentences have structural ambiguity even without
part-of-speech ambiguity. This is called attachment
ambiguity.
} Depends on where different phrases attach in the tree.
} Different attachments have different meanings:

} Next slide shows trees for the first example: prepositional
phrase (PP) attachment ambiguity.

Prepositional Phrase (PP-) Attachment Ambiguity

} Prepositional phrase attachment ambiguity

S

NP

PN

I

VP

V

saw

NP

D

a

N

girl

PP

P

with

NP

D

a

N

telescope

S

NP

PN

I

VP

V

saw

NP

NP

D

a

N

girl

PP

P

with

NP

D

a

N

telescope

Why context-free?

32

What can be a sub-tree is only
affected by what the phrase type is
(VP) but not the context

S

NP

D

The

N

dog

VP

V

ate

NP

D

a

N

sandwich

Why context-free?

33

What can be a sub-tree is only
affected by what the phrase type is
(VP) but not the context

S

NP

D

The

N

dog

VP

V

ate

NP

D

a

N

sandwich

VP

V

ate

NP

D

a

N

sandwich

Not grammaticalVP

V

bark

ADVP

A

often

Why context-free?

34

What can be a sub-tree is only
affected by what the phrase type is
(VP) but not the context

S

NP

D

The

N

dog

VP

V

ate

NP

D

a

N

sandwich

VP

V

ate

NP

D

a

N

sandwich

Not grammaticalVP

V

bark

ADVP

A

often

Matters if we want to generate language (e.g., language
modeling) but is this relevant to parsing?

Key problems

35

} Recognition problem: does the sentence belong to the language
defined by CFG?

} That is: is there a derivation which yields the sentence?

} Parsing problem: what is a (most plausible) derivation (tree)
corresponding the sentence?

} Parsing problem encompasses the recognition problem

Today

36

} Basics of Syntax and Context-Free Grammars

} Classes of Syntactic Parsing Algorithms

} Start with the CKY algorithm

Parsing algorithms

37

} Goal: compute the structure(s) for an input string given a
grammar.
} (we may want to use the structure to interpret meaning)
} As usual, ambiguity is a huge problem.

} For correctness: need to find the right structure to get the
right meaning.

} For efficiency: searching all possible structures can be very
slow
} want to use parsing for large-scale language tasks

Parsing is hard

38

} A typical tree from a standard dataset (Penn treebank WSJ)

Canadian Utilities had 1988 revenue of $ 1.16 billion , mainly from
its natural gas and electric utility businesses in Alberta , where the
company serves about 800,000 customers .

[from Michael
Collins slides]

Parser properties

39

All parsers have two fundamental properties:

} Directionality: the sequence in which the structures are
constructed.
} Top-down: start with root category (S), choose expansions, build

down to words.
} Bottom-up: build subtrees over words, build up to S.
} Mixed strategies also possible (e.g., left corner parsers)

} Search strategy: the order in which the search space of
possible analyses is explored.

Parser properties

40

All parsers have two fundamental properties:

} Directionality: the sequence in which the structures are
constructed.
} Top-down: start with root category (S), choose expansions, build

down to words.
} Bottom-up: build subtrees over words, build up to S.
} Mixed strategies also possible (e.g., left corner parsers)

} Search strategy: the order in which the search space of
possible analyses is explored.

Search space for a top-down parser

41

} Start with S node.

} Choose one of many
possible expansions.

} Each of which has
children with many
possible expansions...

} etc

Search strategies

42

All parsers have two fundamental properties:

} Depth-first search: explore one branch of the search space
at a time, as far as possible. If this branch is a dead-end,
parser needs to backtrack.

} Breadth-first search: expand all possible branches in
parallel (or simulated parallel). Requires storing many
incomplete parses in memory at once.

} Best-first search: score each partial parse and pursue the
highest-scoring options first.

We will now consider a bottom-up parser which uses
dynamic programming to explore the space

Today

43

} Basics of Syntax and Context-Free Grammars

} Classes of Syntactic Parsing Algorithms

} Start with the CKY algorithm

CKY algorithm (aka CYK)

44

} Cocke-Kasami-Younger algorithm

} Independently discovered in late 60s / early 70s

} An efficient bottom-up parsing algorithm for CFGs

} can be used both for the recognition and parsing problems

} Very important in NLP (and beyond)

} As we will see, it is generalizable to probabilistic modeling / PCFGs

Constraints on the grammar

45

} The basic CKY algorithm supports only rules in the Chomsky Normal
Form (CNF):

C ! x

C ! C1C2

Unary preterminal rules, generation of words given PoS tags

Binary inner rules (e.g., ,)

N ! telescopeD ! the

S ! NP V P NP ! D N

Constraints on the grammar

46

} The basic CKY algorithm supports only rules in the Chomsky Normal
Form (CNF):

} Any CFG can be converted to an equivalent CNF

} Equivalent means that they define the same language

} However (syntactic) trees will look differently

} It is possible to address it but defining such transformations that allows for
easy reverse transformation

Unary preterminal rules, generation of words given PoS tags

Binary inner rules (e.g., ,)

C ! x

C ! C1C2

N ! telescopeD ! the

S ! NP V P NP ! D N

Transformation to CNF form

47

} What one need to do to convert to CNF form

} Get rid of empty (aka epsilon) productions:

} Get rid of unary rules:

} N-ary rules:

C ! ✏

Generally not a problem
as there are no empty
production in the
standard treebanks (or
they can be disregarded)

C ! C1

Not a problem, as
our CKY algorithm
will support unary
rules

Crucial to process them,
as required for efficient
parsing

C ! C1 C2 . . . Cn (n > 2)

Transformation to CNF form: binarization

48

} Consider

} How do we get a set of binary rules which are equivalent?

NP

DT

the

NNP

Dutch

VBG

publishing

NN

group

NP ! DT NNP V BG NN

Transformation to CNF form: binarization

49

} Consider

} How do we get a set of binary rules which are equivalent?

NP

DT

the

NNP

Dutch

VBG

publishing

NN

group

NP ! DT NNP V BG NN

NP ! DT X

X ! NNP Y

Y ! V BG NN

Transformation to CNF form: binarization

50

} Consider

} How do we get a set of binary rules which are equivalent?

} A more systematic way to refer to new non-terminals

NP

DT

the

NNP

Dutch

VBG

publishing

NN

group

NP ! DT NNP V BG NN

NP ! DT X

X ! NNP Y

Y ! V BG NN

NP ! DT @NP |DT

@NP |DT ! NNP @NP |DT NNP

@NP |DT NNP ! V BG NN

Transformation to CNF form: binarization

51

} Instead of binarizing tules we can binarize trees on preprocessing:
NP

DT

the

NNP

Dutch

VBG

publishing

NN

group

NP

DT

the

@NP-> DT

NNP

Dutch

@NP-> DT NNP

VBG

publishing

NN

group

Can be easily reversed
on postprocessing

Also known as lossless
Markovization in the
context of PCFGs

Transformation to CNF form: binarization

52

} Instead of binarizing tules we can binarize trees on preprocessing:
NP

DT

the

NNP

Dutch

VBG

publishing

NN

group

NP

DT

the

@NP-> DT

NNP

Dutch

@NP-> DT NNP

VBG

publishing

@NP-> DT NNP VBG

NN

group

Summary

53

} Basics of Syntax and Context-Free Grammars

} Classes of Syntactic Parsing Algorithms

} Started with the CKY algorithm – preparing the grammar

Next lectures(s):

} CKY algorithm

} Probabilistic parsing with PCFGs

} PCFG parsing beyond treebank grammars

} Neuralized PCFG algorithms

