Foundations for Natural Language Processing

Syntax and Parsing (part 2)

lvan Titov

® School of

informatics

» We discussed syntax and ambiguity
» Context free grammars

» Classes of parsing algorithms

» Today:

CKY algorithm
Probabilistic CFGs

S » Internal nodes correspond to phrases

NP VP S — a sentence
PN/\N V/\NP NP (Noun Phrase): My dog, a sandwich, lakes, ..
| | | N VP (Verb Phrase): ate a sausage, barked, ...

| PP (Prepositional phrases): with a friend, in a car, ...

My dog ate D N
|
a Sausage

» Nodes immediately above words are PoS tags

PN — pronoun
D — determiner
V —verb

N — noun

P — preposition

V ={S,VP,NP,PP,N,V, PN, P}

Y, = {girl, telescope, sandwich, I, saw, ate, with, in, a, the}

S ={S}
R :

S—- NP VP
VP -V

VP -V NP
VP —-VP PP

NP —- NP PP
NP —-D N
NP — PN

PP — P NP

Inner rules

(NP A girl) (VP ate a sandwich)

(V ate) (NP a sandwich)
(VP saw a girl) (PP with a telescope)

(NP a girl) (PP with a sandwich)
(D a) (N sandwich)

(P with) (NP with a sandwich)

Preterminal rules

N — girl

N — telescope
N — sandwich
PN — 1

V — saw

V — ate

P — with

P —n

D —a

D — the

» Cocke-Kasami-Younger algorithm
Independently discovered in late 60s / early 70s
» An efficient bottom-up parsing algorithm for CFGs

can be used both for the recognition and parsing problems

» Very important in NLP (and beyond)

» As we will see, it is generalizable to probabilistic modeling / PCFGs

Constraints on the grammar

» The basic CKY algorithm supports only rules in the Chomsky Normal
Form (CNF):

o BTRIRIRETRmS—mSe
CTT smmesensoveve ooy

» The basic CKY algorithm supports only rules in the Chomsky Normal

Form (CNF):
(C) Unary preterminal rules, generation of words given PoS tags
C —xr D — the N — telescope

C — 0102
Binary inner rules (e.g.,S - NP VP, NP — D N)

» Any CFG can be converted to an equivalent CNF
Equivalent means that they define the same language
However (syntactic) trees will look differently

It is possible to address it but defining such transformations that allows for
easy reverse transformation

Transformation to CNF form

» What one need to do to convert to CNF for

» Get rid of empty (aka epsilon) productions: C — ¢

» Get rid of unary rules: C — C;

» N-aryruless C—CyCy...C, (n>2)

» Consider NP - DT NNP VBG NN
NP

DT NNP VBG NN

| | | |
the Dutch publishing group

» How do we get a set of binary rules which are equivalent?

» Consider NP - DT NNP VBG NN
NP

DT NNP VBG NN

| | | |
the Dutch publishing group

» How do we get a set of binary rules which are equivalent?

NP — DT' X
X —+NNPY
Y - VBG NN

10

» Consider NP - DT NNP VBG NN
NP

DT NNP VBG NN

| | | |
the Dutch publishing group

» How do we get a set of binary rules which are equivalent?

NP — DT' X
X —+NNPY
Y - VBG NN

» A more systematic way to refer to new non-terminals
NP — DT QNP|DT
QNP|DT — NNP QNP|DI' NNP
QNP|IDI'NNP - VBG NN

11

Transformation to CNF form: binarization

» Instead of binarizing tules we can binarize trees on preprocessing;

NP
DT NNP VBG NN
t1r|1€ Du|tch publi|shing gro|up
NP
DT QNP->_DT

|
the
NNP QNP-> _DT_NNP

| /\
Dutch vBg NN

| |
publishing group

» Instead of binarizing tules we can binarize trees on preprocessing:

NP
DT NNP VBG NN
| | | |
the Dutch publishing group
DT QNP->_DT
|
the
NNP @QNP->_DT_NNP
|
Dutch
VBG @NP->_DT_NNP_VBG
|
pubhshmg NN

13

start symbol

» We a given
agrammar G = (V,%, R, S)
a sequence of words w = (wy, wa, ..., w,)

» Our goal is to produce a parse tree for w

14

» We a given

agrammar G = (V,%, R, S)

a sequence of words w = (wq, wo, .

» Our goal is to produce a parse tree for w

» We need an easy way to refer to substrings of w

/\

/A

/\

start symbol

/\

ey Why)

/\

/A

0

span (i,j) refers to words between fence posts i and j

2

3

4

5

indices refer to fenceposts

15

» Recognition problem: does the sentence belong to the language
defined by CFG?

Is there a derivation which yields the sentence?

» Parsing problem: what is a derivation (tree) corresponding the
sentence!

Probabilistic parsing: what is the most probable tree for the sentence!?

16

Parsing one word

C%wi

17

C’%wi

18

C’%wi

covers all words
betweeni— | and i

Parsing longer spans

C%Cl CQ

St C,

20

Parsing longer spans

ESEE

C%Cl CQ

21

covers all words
between min and max

22

» Applications of rules is independent of inner structure of a parse tree

» We only need to know the corresponding span and the root label of
the tree
Its signature [m@'n’ max, C’]

Also known as an edge

23

» Compute for every span a set of admissible labels (may be
empty for some spans)

Start from small trees (single words) and proceed to larger
ones

» When done, check if S is among admissible labels for the whole
sentence, if yes — the sentence belong to the language

That is if a tree with signature [0, n, S] exists

» Unary rules!?

24

lead

can

poison

S— NP VP

VP—-M YV

VP -V

NP — N
NP — N NP

Inner rules

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal rules

lead can | poison

min =0

min = 1

min = 2

max = 3

S7

S— NP VP

VP—-M YV

VP -V

NP — N
NP — N NP

Inner rules

N — can
N — lead
N — poison

M — can
M — must

Chart (aka
parsing V' — poison
triangle) V — lead

Preterminal rules

lead

can

poison

lead

can

poison

S— NP VP

VP—-M YV

VP -V

NP — N
NP — N NP

Inner rules

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal rules

lead

can

poison

lead

can

poison

S— NP VP

VP—-M YV

VP -V

NP — N
NP — N NP

Inner rules

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal rules

lead

can

poison

lead

can

poison

S— NP VP

VP—-M YV

VP -V

NP — N
NP — N NP

Inner rules

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal rules

S— NP VP

VP—-M YV

VP -V

NP — N
NP — N NP

Inner rules

lead can | poison
0 1 2 3
max = 1 max = 2 max = 3
min =0 S?
min = 1
min = 2

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal rules

S— NP VP

VP—-M YV

VP -V

NP — N
NP — N NP

Inner rules

lead can | poison
0 1 2 3
max = 1 max = 2 max = 3
1 4
min =0 S?
2
min = 1
min = 2

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal rules

S— NP VP

VP—-M YV

VP -V

NP — N
NP — N NP

Inner rules

lead can | poison
0 1 2 3
max = 1 max = 2 max = 3
3
min=0 ?
2
. ?
min = 1 .
3
?
min =2

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal rules

S— NP VP

sa|nJ Jauu|

-~

VP — M
VP —

poison

can

lead

NP — N
NP — N NP

max = 2 max = 3

max = 1

sa|nJ |eulwlalald

N — lead
N — poison

N — can

0
2

min = 1

min
min

S— NP VP

sa|nJ Jauu|

-~

VP — M
VP —

poison

can

lead

NP — N
NP — N NP

max = 2 max = 3

max = 1

sa|nJ |eulwlalald

N — lead
N — poison

N — can

S N,V

N,V

0
2

min = 1

min
min

S— NP VP

lead can | poison
0 1 2 3
max = 1 max =2 max = 3
3
. N,V
min =0
NP, VP
2
N, M
min =1 NP
3 N,V
min = 2 NP, VP

V — lead

)
(<))
VP—->MYV ES
L VP>V o
R I
£
. NP N |
NP - N NP
N — can
N — lead
)
N — poison %
E
M — can I=
M — must §
D
(a1
V' — poison

S— NP VP

VP—-M YV

VP -V

NP — N
NP — N NP

Inner rules

lead can | poison
0 1 2 3
max = 1 max =2 max =3
| 1 N, v 4
min =0)
NP, VP -
2
N, M
min =1 NP
3 N,V
min = 2 NP, VP

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal rules

S— NP VP

lead can | poison

max = 1 max = 2 max = 3 ENP%NNPE

Inner rules

1 N,V 4 N — can

min=0
NP,VP ? N — lead

N — poison

N, M
min = 1 NP M — can

M — must

S N,V

min = 2 NP, VP V' — poison
V — lead

Preterminal rules

S— NP VP

lead can | poison

max = 1 max = 2 max = 3 ENP%NNPE

Inner rules

1 4
N,V NP N — can

min=0
NP.VP N — lead

N — poison

N, M
min = 1 NP M — can

M — must

S N,V

min = 2 NP, VP V' — poison
V — lead

Preterminal rules

lead can | poison
0 1 2 3
max = 1 max = 2 Check about
unary rules: no
1 y unary rules here
| N,V | NP
min =0
NP, VP
2
N, M
min =1 NP
3 N,V
min = 2 NP VP

S— NP VP

VP—-M YV

VP -V

NP — N
NP — N NP

Inner rules

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal rules

S— NP VP

VP—-M YV

VP -V

NP — N
NP — N NP

Inner rules

lead can | poison
0 1 2 3
max = 1 max =2 max =3
1 4
_ N,V NP
min =0
NP, VP
2 5
N, M 5
min = 1 NP f
3 N,V
min = 2 NP, VP

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal rules

————————————————————

lead can | poison

max = 1 max = 2 max = 3

Inner rules

1 4
N,V NP N — can

min=0
NPVP N — lead

N — poison

5
N,M | S, VP,
min = 1 NP NP M — can

M — must

3 N,V

min = 2 NP, VP V' — poison
V — lead

Preterminal rules

lead can | poison

min =0

min = 1

min =2

max = 1 max = 2 max = 3
3
N,V NP
NP, VP
5
N,M | S, VP,
NP NP
3 N,V
NP, VP

S— NP VP

VP—-M YV

VP -V

NP — N
NP — N NP

Inner rules

N — can
N — lead
N — poison

Check about
unary rules: no
unary rules here

M — can
M — must

V' — poison
V — lead

Preterminal rules

lead can | poison

min =0

min = 1

min =2

S— NP VP

VP—-M YV

VP -V

NP — N
NP — N NP

Inner rules

max = 1 max = 2 max = 3
1 6
N,V NP 0
NP, VP '
5
N,M |'S, VP,
NP NP
3 N,V
NP, VP

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal rules

lead can | poison

min =0

min = 1

min =2

S— NP VP

VP—-M YV

VP -V

NP — N
NP — N NP

Inner rules

max = 1 max = 2 max = 3
"~y " ap |
’ ?
NEVE
5
N7M S7WIP7
NP WP
S N|V
NPV P

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal rules

n
(<))
lead | can |poison VP—-MYV 3
VP >V E
0 1 2 3 I=
NP —- N
max = 1 max = 2 max = 3 [_]__ff_j_{_f_g\fnﬁj
- "~vov |*np |°s NP N — can
min =
(Rl = N — poison %
2 =
N, M 55, VP, G
min = 1 NP NP M — can g
M — must [
3 g
N,V &
min = 2 NP, VP V' — poison
V — lead

lead can | poison
0 1 2
min=0
mid = 2
min = 1
min = 2

Inner rules

max = 1 max = 2 max = 3
1 6
N,V NP S, NP
NP, VP S(?)
5
N,M |8, VP,
NP NP
S N,V
NP, VP

N — can
N — lead
N — poison

M — can
M — must

V' — poison
V — lead

Preterminal rules

/)]
o)
lead | can |poison VP—-MYV 3
VP =V E
0 1 2 3 <
NP — N
max = 1 max = 2 max = 3 NP — N NP
[vv |PNp s e N — can
min =
mid = 2 N — poison %
2 —
N, M SS, VP, ©
min = 1 NP NP M — can g
M — must @
3 NV o
o
Apparently the sentence is ambiguous with the V' — poison

grammar V — lead

Ambiguity

S
S /\
NP/\VP NP vE
PN |
| N N NP Vv

lead can poison |

Here we assume that

labels (C) are integer
indices

» Chart can be represented by a Boolean array chart[min] [max] [C]

Relevant entries have 0 < min < max < n

» chart[min] [max] [C] = true if the signature (min, max, C) is

already added to the chart; false otherwise.

min =0

min = 1

min = 2

max = 1 max = 2 max = 3
1 6

N,V NP S,VP,

NP, VP NP
5

N,M |'S, VP,

NP NP

8 N,V

NP, VP

49

Here we assume that

labels (C) are integer
indices

» Chart can be represented by a Boolean array chart[min] [max] [C]

Relevant entries have 0 < min < max < n

» chart[min] [max] [C] = true if the signature (min, max, C) is

already added to the chart; false otherwise.

min =0

min = 1

min = 2

max = 1 max = 2 max = 3
1 6

N,V NP S,VP,

NP, VP NP
5

N,M |'S, VP,

NP NP

8 N,V

NP, VP

50

for each wi from left to right

for each preterminal rule C -> w;

chart[i - 1][i][C] = true

51

for each max from 2 to n
for each min from max - 2 down to 0
for each syntactic category C
for each binary rule C -> Ci1 Cz
for each mid from min + 1 to max - 1
if chart[min][mid][C1] and chart[mid][max][Cz] then

chart[min][max][C] = true

52

» How to integrate unary rules C' — (' ?

93

for each max from 1 to n <«

/ new bounds!
for each min from max - 1 down to 0

// First, try all binary rules as before.

// Then, try all unary rules.

for each syntactic category C

for each unary rule C -> C,
if chart[min][max][C1] then

chart[min][max][C] = true

54

for each max from 1 to n <«

/ new bounds!
for each min from max - 1 down to 0

// First, try all binary rules as before.

// Then, try all unary rules.

for each syntactic category C

for each unary rule C -> C,
if chart[min][max][C1] then

chart[min][max][C] = true

But we forgot something!
55

» What if the grammar contained 2 rules:
A— B
B—=C

» But C can be derived from A by a chain of rules:

A—B—=C

» One could support chains in the algorithm but it is easier to extend
the grammar, to get the transitive closure

A— B
= B —C
A—C

A— B
B—C

o6

Implementation: skeleton

// int n = number of words in the sequence
// int m = number of syntactic categories in the grammar
// int s = the (number of the) grammar’s start symbol

boolean[][][] chart = new boolean[n + 1][n + 1][m]
// Recognize all parse trees built with with preterminal rules.
// Recognize all parse trees built with inner rules.

return chart[0][n][s]

o7

» Time complexity?

58

» Time complexity?
for each max from 2 to n
for each min from max - 2 down to 0
for each syntactic category C
for each binary rule C -> Ci1 Cz

for each mid from min + 1 to max - 1

59

» Time complexity?
for each max from 2 to n

for each min from max - 2 down to 0
A few seconds for

for each syntactic category C sentences under < 20
words for a non-
for each binary rule C -> Ci C: optimized parser

for each mid from min + 1 to max - 1

9(723 ‘RD , where ’R‘ is the number of rules in the grammar

60

» Time complexity?
for each max from 2 to n

for each min from max - 2 down to 0
A few seconds for

for each syntactic category C sentences under < 20
words for a non-
for each binary rule C -> C:1 C: optimized parser

for each mid from min + 1 to max - 1

@(ng ‘RD , Where ’R’ is the number of rules in the grammar

» There exist algorithms with better asymptotical time complexity but
the "constant’ makes them slower in practice (in general)

61

Today

» CKY for the recognition problem
» Probabilistic PCFGs

62

» There are (exponentially) many derivation for a typical sentence

m I\
NP PP v NP PP NP re SN
D/\\' /\ | /\ N /\ D N
N) ol 5N L
1\]\ T NP NP PP P NP | | p NP the kitchen
the box O\n /\ s N | /\ the block | /\ - o
NP PP]‘3 IT p NP on NP Pp NP PP
PN ‘ PN
D N P/\Np the block in D N S TN N N
\ | |~ \ \ b N p NP boNP P
the table i p N the box \ \ \ P | | ‘ N
| | the table i, D N the box op D N
the kitchen | | | ‘
the kitchen the table

Put the block in the box on the table in the kitchen

» We want to score all the derivations to encode how plausible they
are

63

probabilistic

Associate probabilities with the rules p(X — «):

S— NP VP

VP -V
VP -V NP
VP —-VP PP

NP —- NP PP
NP —-D N
NP — PN

PP — P NP

VX —>acR: 0<pX—a)<l

VX e N : Y pX—a)=1
a:X—a€ER

1.0 (NP A girl) (VP ate a sandwich)

0.2

0.4 (VP ate) (NP a sandwich)

0.4 (VP saw a girl) (PP with ...)

0.3 (NP a qgirl) (PP with)

0.5 (D a) (N sandwich)

0.2

1.0 (P with) (NP with a sandwich)

Now we can score a
tree as a product of
probabilities
corresponding to the
used rules

N — girl

N — telescope
N — sandwich
PN — 1

V — saw

V — ate

P — with

P —n

D —a

D — the

0.2
0.7
0.1
1.0
0.5
0.5

0.6
0.4

0.3

0.7
64

S— NP VP

VP -V
VP -V NP
VP —-VP PP

NP —- NP PP
NP —-D N
NP — PN

PP —P NP

1.0

0.2
0.4
0.4

0.3
0.5
0.2

1.0

N — girl 0.2

N — telescope 0.7
N — sandwich 0.1

PN — 110
V — saw 0.5
V' — ate 0.5
P — with 0.6
P —ino04
D —ao03

D — the 0.7

65

S
1.0
& v
p(T) =1.0 x

VP>V
VP -V NP
VP —-VP PP

NP —- NP PP
NP —-D N
NP — PN

PP —P NP

0.3
0.5
0.2

1.0

N — girl 0.2

N — telescope 0.7
N — sandwich 0.1

PN — 110
V — saw 0.5
V' — ate 0.5
P — with 0.6
P —ino04
D —ao03

D — the 0.7

66

NP VP
0.2

PN

p(T) =1.0 x 0.2 x

S—- NP VP

VP>V

VP -V NP

VP —-VP PP

NP —- NP PP

N — girl 0.2

N — telescope 0.7
N — sandwich 0.1
PN — 110

V — saw 0.5

V' — ate 0.5

P — with 06

P —ino04

D —ao03

D — the 0.7

67

p(T) =1.0 x 0.2 x 1.0 x

S— NP VP

VP>V
VP -V NP
VP —-VP PP

NP —- NP PP
NP —D N
NP — PN

PP —P NP

1.0

0.2
0.4
0.4

0.3
0.5
0.2

1.0

N — girl 0.2
N — telescope 0.7
N — sandwich 0.1

V — saw 0.5
V' — ate 0.5
P — with 0.6
P —ino04
D —ao03

D — the 0.7

68

| 04
PN /\

p(T) =1.0 x 0.2 x 1.0 x 0.4 x

VP —-VP PP
NP —- NP PP
NP —D N
NP — PN

PP —P NP

N — girl 0.2

N — telescope 0.7
N — sandwich 0.1

PN — 110
V — saw 0.5
V' — ate 0.5
P — with 0.6
P —ino04
D —ao03

D — the 0.7

69

: 04
PN /\

Saw

S— NP VP

VP>V
VP -V NP
VP —-VP PP

NP —- NP PP
NP —D N
NP — PN

PP —P NP

p(T) =1.0 x 0.2 x 1.0 x 0.4 x 0.5 x

1.0

0.2
0.4
0.4

0.3
0.5
0.2

1.0

N — girl 0.2
N — telescope 0.7
N — sandwich 0.1

P — with 0.6
P—imo4
D —ao03

D — the 0.7

70

S— NP VP

VP>V
VP -V NP
VP —-VP PP

p(T) =1.0 x 0.2 x 1.0 x 0.4 X 0.5 x 0.3x

N — girl 0.2

N — telescope 0.7
N — sandwich 0.1
PN — 110

V — saw 0.5

V' — ate 0.5

P — with 0.6

P —ino04

D —ao03

D — the 0.7

71

S— NP VP10 N — girl 0.2
N — telescope 0.7
VP =V 02 N — sandwich 0.1

VP —=V NP 04 PN /
VP VP PP 04 — 1410
> 1.0 V — saw 0.5
NP/\VP NP —- NP PP 03 V — ate 0.5
I NP DN 05| P with 06
}1.0 \|/0.5 K NP —- PN 0.2 P sinoa
saw NP Sp D= a03

PE PP P NP 1.0

D N D — the 0.7

p(T) =1.0 x 0.2 x 1.0 x 0.4 x 0.5 x 0.3%
0.5 X

72

S
A
NP VP
|0-2 0.4
PN /\
|1.o VvV NP
I |0.5 AM
AW NP PP
A5
D N
|0.3
a

S— NP VP

VP>V
VP -V NP
VP —-VP PP

NP —- NP PP
NP —D N
NP — PN

PP —P NP

p(T) =1.0 x 0.2 x 1.0 x 0.4 X 0.5 x 0.3x

0.5 X 0.3 X

1.0

0.2
0.4
0.4

0.3
0.5
0.2

1.0

N — girl 0.2

N — telescope 0.7
N — sandwich 0.1

PN — 110
V — saw 0.5

V — ate 0.5
P — with 06

D — the 0.7

73

S
A
NP VP
|0-2 0.4
PN /\
|1.o VvV NP
; |0.5 A0_3
AW NP PP
A5
D N
|03 |0.2
a girl

S— NP VP

VP>V
VP -V NP
VP —-VP PP

NP —- NP PP
NP —D N
NP — PN

PP —P NP

p(T) =1.0 x 0.2 x 1.0 x 0.4 X 0.5 x 0.3x

0.5 x0.3x0.2

1.0

0.2
0.4
0.4

0.3
0.5
0.2

1.0

EN — girl 0_25

N — telescope 0.7
N — sandwich 0.1

PN — 110
V — saw 0.5
V' — ate 0.5
P — with 0.6
P —ino04
D —ao03

D — the 0.7

74

S— NP VP10 N — girl 0.2
N — telescope 0.7
VP =V 02 N — sandwich 0.1
VP —=V NP 04 PN /
VP VP PP 04 — 1410
> 1.0 V — saw 0.5
NP VP NP —- NP PP 03 V — ate 0.5
P|N' A NP —D N 05 P — with 06
}1.0 Yo.5 K NP —- PN 0.2 P sinoa
os PP — P NP 1.0 Doy
I|)0.3 1TIo_z 1|30_6 NP — the 0.7
a gitl with D N
0. 0.7

a telescope

p(T) =1.0 x 0.2 x 1.0 x 0.4 x 0.5 x 0.3x
0.5 x03x02x1.0x06x0.5x0.3x0.7
— 2.26 x 107°

75

» We defined a distribution over production rules for each nonterminal

» Our goal was to define a distribution over parse trees

Unfortunately, not all PCFGs give rise to a proper distribution
over trees, i.e. the sum over probabilities of all trees the

grammar can generate may be less than 1: » _P(T) <1
T

/6

» We defined a distribution over production rules for each nonterminal

» Our goal was to define a distribution over parse trees

Unfortunately, not all PCFGs give rise to a proper distribution
over trees, i.e. the sum over probabilities of all trees the

grammar can generate may be less than 1: » _P(T) <1
T

» Good news: any PCFG estimated with the maximum likelihood procedure
are always proper [Chi and Geman, 98]

77

» Let us denote by G(x) the set of derivations for the sentence x

» The probability distribution defines the scoring P(T’) over the trees
T e G(x)

» Finding the best parse for the sentence according to PCFG:

arg max P(T)
TeG((x)

/8

» CKY is an important tool, used in many applications
» PCFGs

» Next time;:
Estmation of PCFGs, CKY for PCFGs,
‘Vanilla’ PCFGs weakness and how to address them

Grammar refinement and neutralized models

» Next week

Last lecture on Tuesday
No lecture on Wednesday

Revision and Q&A session on Friday

79

