Foundations for Natural Language Processing Syntax and Parsing (part 2)

Ivan Titov

Last time

- We discussed syntax and ambiguity
- Context free grammars
- Classes of parsing algorithms
- ► Today:
 - CKY algorithm
 - Probabilistic CFGs

Recap: Constituent trees

Internal nodes correspond to phrases

S – a sentence

NP (Noun Phrase): My dog, a sandwich, lakes, ...

VP (Verb Phrase): ate a sausage, barked, ...

PP (Prepositional phrases): with a friend, in a car, ...

Nodes immediately above words are PoS tags

PN – pronoun

D – determiner

V – verb

N – noun

P – preposition

Recap: An example grammar

```
V = \{S, VP, NP, PP, N, V, PN, P\}
  \Sigma = \{girl, telescope, sandwich, I, saw, ate, with, in, a, the\}
  S = \{S\}
                                    Inner rules
  R:
  S \rightarrow NP \ VP (NP A girl) (VP ate a sandwich)
       VP \rightarrow V
  VP \rightarrow V \ NP (V ate) (NP a sandwich)
VP \rightarrow VP PP
                    (VP saw a girl) (PP with a telescope)
NP \rightarrow NP PP (NP a girl) (PP with a sandwich)
                    (D a) (N sandwich)
   NP \rightarrow D N
     NP \rightarrow PN
  PP \rightarrow P NP (P with) (NP with a sandwich)
```

Preterminal rules

 $N \rightarrow qirl$ $N \rightarrow telescope$ $N \rightarrow sandwich$ $PN \rightarrow I$ $V \rightarrow saw$ $V \rightarrow ate$ $P \rightarrow with$ $P \rightarrow in$ $D \rightarrow a$ $D \rightarrow the$

CKY algorithm (aka CYK)

- Cocke-Kasami-Younger algorithm
 - Independently discovered in late 60s / early 70s
- An efficient bottom-up parsing algorithm for CFGs
 - can be used both for the recognition and parsing problems
- Very important in NLP (and beyond)

As we will see, it is generalizable to probabilistic modeling / PCFGs

Constraints on the grammar

▶ The basic CKY algorithm supports only rules in the *Chomsky Normal*

Form (CNF):

$$C \to x$$

$$C \to C_1 C_2$$

Unary preterminal rules, generation of words given PoS tags $D \to the \quad N \to telescope$

Binary inner rules (e.g., $S \rightarrow NP \ VP, \ NP \rightarrow D \ N$)

Constraints on the grammar

The basic CKY algorithm supports only rules in the *Chomsky Normal*

Form (CNF): Unary preterminal rules, generation of words given PoS tags C o x $C o C_1 C_2$ Binary inner rules (e.g., $S o NP\ VP,\ NP o D\ N$)

- Any CFG can be converted to an equivalent CNF
 - Equivalent means that they define the same language
 - However (syntactic) trees will look differently
 - It is possible to address it but defining such transformations that allows for easy reverse transformation

Transformation to CNF form

- What one need to do to convert to CNF form
 - lacktriangle Get rid of empty (aka epsilon) productions: $C o\epsilon$
 - Get rid of unary rules: $C \to C_1$
 - N-ary rules: $C \rightarrow C_1 \ C_2 \dots C_n \ (n > 2)$

Generally not a problem as there are no empty production in the standard treebanks (or they can be disregarded)

Not a problem, as our CKY algorithm will support unary rules

Crucial to process them, as required for efficient parsing

▶ Consider $NP \rightarrow DT \ NNP \ VBG \ NN$

▶ How do we get a set of binary rules which are equivalent?

▶ Consider $NP \rightarrow DT \ NNP \ VBG \ NN$

How do we get a set of binary rules which are equivalent?

$$NP \to DT X$$
 $X \to NNP Y$

$$Y \rightarrow VBG NN$$

▶ Consider $NP \rightarrow DT \ NNP \ VBG \ NN$

How do we get a set of binary rules which are equivalent?

$$NP \rightarrow DT X$$
 $X \rightarrow NNP Y$
 $Y \rightarrow VBG NN$

▶ A more systematic way to refer to new non-terminals

Instead of binarizing tules we can binarize trees on preprocessing:

Also known as **lossless Markovization** in the context of PCFGs

Can be easily reversed on postprocessing

Instead of binarizing tules we can binarize trees on preprocessing:

CKY: Parsing task

start symbol

- We a given
 - a grammar $G = (V, \Sigma, R, S)$
 - a sequence of words $\boldsymbol{w} = (w_1, w_2, \dots, w_n)$
- lacktriangle Our goal is to produce a parse tree for w

CKY: Parsing task

start symbol

- We a given
 - a grammar $G = (V, \Sigma, R, S)$
 - $m{v}$ a sequence of words $m{w} = (w_1, w_2, \dots, w_n)$
- lacktriangle Our goal is to produce a parse tree for w

lacktriangle We need an easy way to refer to substrings of w

span (i, j) refers to words between fence posts i and j

Recall -- Key problems

- Recognition problem: does the sentence belong to the language defined by CFG?
 - Is there a derivation which yields the sentence?
- ▶ Parsing problem: what is a derivation (tree) corresponding the sentence?
 - Probabilistic parsing: what is the most probable tree for the sentence?

Parsing one word

 $C \to w_i$

 w_i

Parsing one word

Parsing one word

Parsing longer spans

$$C \rightarrow C_1 \ C_2$$

Parsing longer spans

Parsing longer spans

Signatures

- Applications of rules is independent of inner structure of a parse tree
- We only need to know the corresponding span and the root label of the tree
 - lacktriangleright Its signature [min, max, C]

Also known as an edge

CKY idea

- Compute for every span a set of admissible labels (may be empty for some spans)
 - Start from small trees (single words) and proceed to larger ones
- When done, check if S is among admissible labels for the whole sentence, if yes – the sentence belong to the language
 - That is if a tree with signature [0, n, S] exists
- Unary rules?

$$S \to NP VP$$

$$VP \rightarrow M V$$
 $VP \rightarrow V$

$$NP \to N$$

$$NP \to N \ NP$$

$$N \rightarrow can$$

$$N \rightarrow lead$$

$$N \rightarrow poison$$

$$M \to can$$

$$M \to must$$

$$V \rightarrow poison \\ V \rightarrow lead$$

max = 1 max = 2 max = 3

 $\min = 0$ S? $\min = 1$ $\min = 2$

 $VP \rightarrow M \ V$ $VP \rightarrow V$

 $S \to NP VP$

 $NP \to N$ $NP \to N \ NP$

 $N \rightarrow can$ $N \rightarrow lead$ $N \rightarrow poison$

 $M \to can$ $M \to must$

Chart (aka parsing triangle)

 $V \to poison$ $V \to lead$

$$VP \to M V$$
 $VP \to V$

 $S \to NP \ VP$

$$NP \to N$$

$$NP \to N \ NP$$

$$N \rightarrow can$$
 $N \rightarrow lead$
 $N \rightarrow poison$

$$M \to can$$
 $M \to must$

$$V \rightarrow poison$$
 $V \rightarrow lead$

$$VP \rightarrow M V$$
 $VP \rightarrow V$

$$NP \to N$$

$$NP \to N \ NP$$

$$N \rightarrow can$$
 $N \rightarrow lead$ $N \rightarrow poison$

$$M \to can$$
 $M \to must$

$$V \to poison$$

$$V \to lead$$

 $S \rightarrow NP \ VP$

	lead	can	po	ison	
C)	1	2	3	Mat 113 Minto
					S? Minty
				۸.	
				Mad "	n _{in}

lead

$$VP \to M V$$
 $VP \to V$

$$NP \to N$$

$$NP \to N \ NP$$

$$N \rightarrow can$$

$$N \rightarrow lead$$

$$N \rightarrow poison$$

$$M \to can$$
$$M \to must$$

poison

can

$$V \to poison$$

$$V \to lead$$

max = 1 max = 2 max = 3

$$NP \to N$$

$$NP \to N NP$$

 $VP \to M \ V$

 $VP \to V$

 $N \rightarrow can$ $N \rightarrow lead$ $N \rightarrow poison$

 $M \to can$ $M \to must$

$$V \rightarrow poison$$

$$V \rightarrow lead$$

max = 2max = 3max = 1

min = 02 5 min = 13 min = 2

$$VP \rightarrow M V$$
 $VP \rightarrow V$

 $S \to NP \ VP$

$$NP \to N$$

$$NP \to N NP$$

$$N \rightarrow can$$
 $N \rightarrow lead$ $N \rightarrow poison$

$$M \to can$$

$$M \to must$$

$$V \rightarrow poison$$

$$V \rightarrow lead$$

 $max = 1 \qquad max = 2 \qquad max = 3$

min = 0 ? 2 ? min = 1 3 ? ?

$$VP \rightarrow M V$$
 $VP \rightarrow V$

$$NP \to N$$

$$NP \to N NP$$

$$N \rightarrow can$$

$$N \rightarrow lead$$

$$N \rightarrow poison$$

$$M \to can$$

$$M \to must$$

$$V \rightarrow poison$$

$$V \rightarrow lead$$

max = 1 max = 2 max = 3 min = 0 min = 1 min = 2 min = 2 max = 3 max = 3 min = 3

$$VP \rightarrow M V$$
 $VP \rightarrow V$

 $S \to NP \ VP$

$$NP \to N$$

$$NP \to N NP$$

N o can N o lead N o poison M o can M o must V o poison

 $V \to lead$

min = 0N, Mmin = 1N, V

max = 1

min = 2

max = 2

max = 3

$$VP \rightarrow M V$$
 $VP \rightarrow V$

 $S \to NP \ VP$

$$NP \to N$$

$$NP \to N NP$$

 $N \to can$ $N \to lead$ $N \to poison$

 $M \to can$ $M \to must$

 $V \to poison$ $V \to lead$

min = 0	$egin{array}{ccc} 1 & & & & & \\ N, V & & & & & \\ NP, VP & & & & & \\ \end{array}$		
min = 1		$ \begin{array}{c} 2 \\ N, M \\ NP \end{array} $	
min = 2			NP, VP

max = 2

max = 1

max = 3

$$VP o M \ V$$
 $VP o V$
 $VP o N$
 $NP o N \ NP$

$$N \rightarrow can$$
 $N \rightarrow lead$ $N \rightarrow poison$

$$M \to can$$

$$M \to must$$

$$V \rightarrow poison$$
 $V \rightarrow lead$

max = 1 max = 2 max = 3

$$S \to NP VP$$

$$VP \to M V$$
 $VP \to V$

$$NP \to N$$

$$NP \to N NP$$

$$N \rightarrow can$$
 $N \rightarrow lead$ $N \rightarrow poison$

$$M \to can$$

$$M \to must$$

$$V \rightarrow poison$$

$$V \rightarrow lead$$

max = 2max = 1max = 3

min = 0 N, Mmin = 1NPN, Vmin = 2

$$VP \rightarrow M V$$
 $VP \rightarrow V$

 $S \to NP \ VP$

$$NP \to N$$
$$NP \to N \ NP$$

$$N \rightarrow can$$
 $N \rightarrow lead$ $N \rightarrow poison$

$$M \to can$$

$$M \to must$$

$$V \rightarrow poison \\ V \rightarrow lead$$

max = 1 max = 2 max = 3

 $\min = 0 \quad \begin{bmatrix} 1 & N, V & 4 & NP \\ NP, VP & & & \\ \end{bmatrix}$ $\min = 1 \quad \begin{bmatrix} 2 & N, M & \\ & NP & \\ & & \\ \end{bmatrix}$ $\min = 2 \quad \begin{bmatrix} 3 & N, V \\ & NP, VP \\ \end{bmatrix}$

$$S \to NP \ VP$$

$$VP \rightarrow M V$$
 $VP \rightarrow V$

$$NP \to N$$
$$NP \to N \ NP$$

$$N \rightarrow can$$
 $N \rightarrow lead$ $N \rightarrow poison$

$$M \to can$$

$$M \to must$$

$$V \rightarrow poison$$

$$V \rightarrow lead$$

 $S \to NP VP$

$$VP \rightarrow M V$$
 $VP \rightarrow V$

$$NP \to N$$

$$NP \to N NP$$

$$N \rightarrow can$$
 $N \rightarrow lead$ $N \rightarrow poison$

$$M \to can$$

$$M \to must$$

$$V \rightarrow poison$$
 $V \rightarrow lead$

max = 1 max = 2 max = 3

 $\min = 0 \quad \begin{bmatrix} 1 & N, V & 4 & NP \\ NP, VP & & & \\ \end{bmatrix}$ $\min = 1 \quad \begin{bmatrix} 2 & N, M & 5 \\ NP & & \\ \end{bmatrix}$ $\min = 2 \quad \begin{bmatrix} 3 & N, V \\ NP, VP & \\ \end{bmatrix}$

$$S \to NP VP$$

$$VP \rightarrow M V$$
 $VP \rightarrow V$

$$NP \to N$$

$$NP \to N NP$$

$$N \rightarrow can$$
 $N \rightarrow lead$ $N \rightarrow poison$

$$M \to can$$

$$M \to must$$

$$V \rightarrow poison$$

$$V \rightarrow lead$$

max = 1 max = 2 max = 3

$$\min = 0 \quad \begin{bmatrix} 1 & N, V & 4 & NP \\ NP, VP & & & \\ \end{bmatrix}$$

$$\min = 1 \quad \begin{bmatrix} 2 & N, M & 5S, VP, \\ NP & & NP \\ \end{bmatrix}$$

$$\min = 2 \quad \begin{bmatrix} 3 & N, V \\ NP, VP \\ \end{bmatrix}$$

 $S \to NP \ VP$

$$\begin{array}{c} VP \to M \ V \\ VP \to V \end{array}$$

$$NP \to N$$

$$NP \to N \ NP$$

$$N \rightarrow can$$
 $N \rightarrow lead$ $N \rightarrow poison$

$$M \to can$$

$$M \to must$$

$$V \rightarrow poison \\ V \rightarrow lead$$

 $VP \to M V$ $VP \to V$

 $NP \to N$ $NP \to N NP$

$$max = 1$$
 $max = 2$ $max = 3$

Check about $N \to lead$ unary rules: no unary rules here $N \to poison$

 $M \to can$ $M \to must$

 $N \to can$

$$V \rightarrow poison$$
 $V \rightarrow lead$

	lead	can	poison	
0	1		2	3

max = 1 max = 2 max = 3

 $\min = 0 \quad \begin{bmatrix} 1 & N, V & 4 & NP & 6 \\ NP, VP & & & \\ \end{bmatrix}$ $\min = 1 \quad \begin{bmatrix} 2 & N, M & 5S, VP, \\ NP & & NP \\ \end{bmatrix}$ $\min = 2 \quad \begin{bmatrix} 3 & N, V \\ NP, VP \\ \end{bmatrix}$

$$S \rightarrow NP VP$$

$$VP \rightarrow M V$$
 $VP \rightarrow V$

$$NP \to N$$

$$NP \to N \ NP$$

$$N \rightarrow can$$

$$N \rightarrow lead$$

$$N \rightarrow poison$$

$$M \to can$$

$$M \to must$$

$$V \rightarrow poison$$
 $V \rightarrow lead$

max = 1 max = 2 max = 3

 $S \rightarrow NP VP$

$$VP \to M V$$
 $VP \to V$

$$NP \to N$$

$$NP \to N NP$$

$$N \rightarrow can$$
 $N \rightarrow lead$ $N \rightarrow poison$

$$M \to can$$

$$M \to must$$

$$V \rightarrow poison$$
 $V \rightarrow lead$

max = 1max = 2max = 3

mid = 1

min = 0	$\begin{bmatrix} 1 & N, V \\ NP, VP \end{bmatrix}$	4 NP	^{6}S , NP
min = 1		$egin{array}{cccccccccccccccccccccccccccccccccccc$	5S, VP, NP
			[3,N,V]
min = 2			NP, VP

$$VP \to M V$$
 $VP \to V$

 $S \rightarrow NP \ VP$

$$NP \to N$$

$$NP \to N \ NP$$

$$N \rightarrow can$$

$$N \rightarrow lead$$

$$N \rightarrow poison$$

$$M \to can$$

$$M \to must$$

$$V \rightarrow poison \\ V \rightarrow lead$$

max = 1 max = 2 max = 3

mid = 2

min = 0	$ \begin{array}{ccc} 1 & N, V \\ NP, VP \end{array} $	4 NP	$egin{array}{c} {}^{6}S,NP \ S(?!) \end{array}$
min = 1		$\begin{bmatrix} 2 & N, M & \\ & NP & \end{bmatrix}$	5S, VP, NP
			N, V
min = 2			NP, VP

 $S \rightarrow NP \ VP$

$$VP \rightarrow M V$$
 $VP \rightarrow V$

$$NP \to N$$

$$NP \to N \ NP$$

$$N
ightarrow can$$
 $N
ightarrow lead$ $N
ightarrow poison$

$$M \to can$$

$$M \to must$$

$$V \rightarrow poison \\ V \rightarrow lead$$

max = 1 max = 2 max = 3

mid = 2

$$\min = 0 \quad \begin{bmatrix} 1 & N, V & 4 & NP & 6 \\ NP, VP & & S(?!) & \\ \end{bmatrix}$$

$$\min = 1 \quad \begin{bmatrix} 2 & N, M & 5 \\ NP & & NP \\ \end{bmatrix}$$

$$3 \quad N \quad V$$

Apparently the sentence is ambiguous with the grammar

$$VP \rightarrow M V$$
 $VP \rightarrow V$

 $S \to NP \ VP$

$$NP \to N$$

$$NP \to N NP$$

$$N \rightarrow can$$
 $N \rightarrow lead$ $N \rightarrow poison$

$$M \to can$$

$$M \to must$$

$$V \rightarrow poison \\ V \rightarrow lead$$

Ambiguity

No subject-verb agreement, and poison used as an intransitive verb

Apparently the sentence is ambiguous with the grammar

CKY more formally

Here we assume that labels (C) are integer indices

- Chart can be represented by a Boolean array chart [min] [max] [C]
 - ▶ Relevant entries have $0 \le \min \le \max \le n$
- chart[min][max][C] = true if the signature (min, max, C) is already added to the chart; false otherwise.

CKY more formally

Here we assume that labels (C) are integer indices

- Chart can be represented by a Boolean array chart [min] [max] [C]
 - ▶ Relevant entries have $0 \le \min \le \max \le n$
- chart[min][max][C] = true if the signature (min, max, C) is already added to the chart; false otherwise.

Implementation: preterminal rules

```
for each wi from left to right
  for each preterminal rule C -> wi
    chart[i - 1][i][C] = true
```

Implementation: binary rules

```
for each max from 2 to n

for each min from max - 2 down to 0

for each syntactic category C

for each binary rule C -> C1 C2

for each mid from min + 1 to max - 1

if chart[min][mid][C1] and chart[mid][max][C2] then

chart[min][max][C] = true
```

Unary rules

▶ How to integrate unary rules $C o C_1$?

Implementation: unary rules

```
for each max from 1 to n <
                                             new bounds!
  for each min from max - 1 down to 0 #
    // First, try all binary rules as before.
    // Then, try all unary rules.
    for each syntactic category C
      for each unary rule C -> C1
        if chart[min][max][C1] then
          chart[min][max][C] = true
```

Implementation: unary rules

```
for each max from 1 to n
                                             new bounds!
  for each min from max - 1 down to 0
   // First, try all binary rules as before.
    // Then, try all unary rules.
    for each syntactic category C
      for each unary rule C -> C1
        if chart[min][max][C1] then
          chart[min][max][C] = true
```

But we forgot something!

Unary closure

What if the grammar contained 2 rules:

$$A \to B$$

$$B \to C$$

▶ But C can be derived from A by a chain of rules:

$$A \to B \to C$$

 One could support chains in the algorithm but it is easier to extend the grammar, to get the transitive closure

$$\begin{array}{c}
A \to B \\
B \to C
\end{array} \Rightarrow
\begin{array}{c}
A \to B \\
B \to C \\
A \to C
\end{array}$$

Implementation: skeleton

```
// int n = number of words in the sequence

// int m = number of syntactic categories in the grammar

// int s = the (number of the) grammar's start symbol

boolean[][][] chart = new boolean[n + 1][n + 1][m]

// Recognize all parse trees built with with preterminal rules.

// Recognize all parse trees built with inner rules.

return chart[0][n][s]
```

Time complexity?

Time complexity?

```
for each max from 2 to n

for each min from max - 2 down to 0

for each syntactic category C

for each binary rule C -> C1 C2

for each mid from min + 1 to max - 1
```

Time complexity?

```
for each max from 2 to n

for each min from max - 2 down to 0

for each syntactic category C

for each binary rule C -> C1 C2

for each mid from min + 1 to max - 1
```

A few seconds for sentences under < 20 words for a non-optimized parser

 $\theta(n^3|R|)$, where |R| is the number of rules in the grammar

Time complexity?

```
for each max from 2 to n

for each min from max - 2 down to 0

for each syntactic category C

for each binary rule C -> C1 C2

for each mid from min + 1 to max - 1
```

A few seconds for sentences under < 20 words for a non-optimized parser

- $heta(n^3|R|)$, where |R| is the number of rules in the grammar
- There exist algorithms with better asymptotical time complexity but the `constant' makes them slower in practice (in general)

Today

- ▶ CKY for the recognition problem
- Probabilistic PCFGs

How to deal with ambiguity?

There are (exponentially) many derivation for a typical sentence

Put the block in the box on the table in the kitchen

We want to score all the derivations to encode how plausible they are

An example probabilistic CFG

Associate probabilities with the rules $p(X \to \alpha)$:

$$\forall X \to \alpha \in R : 0 \le p(X \to \alpha) \le 1$$

 $\forall X \in N : \sum_{\alpha: X \to \alpha \in R} p(X \to \alpha) = 1$

Now we can score a tree as a product of probabilities corresponding to the used rules

$S \to NP \ VP$	1.0	(NP A girl) (VP ate a sandwich)
$VP \rightarrow V$ $VP \rightarrow V \ NP$ $VP \rightarrow VP \ PP$	0.2 0.4 0.4	(VP ate) (NP a sandwich) (VP saw a girl) (PP with)
$NP \rightarrow NP \ PP$ $NP \rightarrow D \ N$ $NP \rightarrow PN$	0.3 0.5 0.2	(NP a girl) (PP with) (D a) (N sandwich)
$PP \rightarrow P \ NP$	1.0	(P with) (NP with a sandwich)

$$N
ightarrow girl \quad 0.2$$
 $N
ightarrow telescope \quad 0.7$
 $N
ightarrow sandwich \quad 0.1$
 $PN
ightarrow I \quad 1.0$
 $V
ightarrow saw \quad 0.5$
 $V
ightarrow ate \quad 0.5$
 $P
ightarrow with \quad 0.6$
 $P
ightarrow in \quad 0.4$
 $D
ightarrow a \quad 0.3$
 $D
ightarrow the \quad 0.7$

 $S \rightarrow NP \ VP \ 1.0$

 $VP \rightarrow V$ 0.2

N o girl 0.2

 $N \rightarrow telescope$ 0.7

 $N \rightarrow sandwich$ 0.1

 $PN \rightarrow I$ 1.0

 $V \rightarrow saw$ 0.5

 $V \rightarrow ate \ 0.5$

 $P \rightarrow with \ 0.6$

 $P \rightarrow in$ 0.4

D o a 0.3

 $D \rightarrow the \ 0.7$

$$VP
ightarrow V \ NP \ 0.4$$
 $VP
ightarrow VP \ PP \ 0.4$
 $NP
ightarrow NP \ PP \ 0.3$
 $NP
ightarrow D \ N \ 0.5$
 $NP
ightarrow PN \ 0.2$
 $PP
ightarrow P \ NP \ 1.0$

$$p(T) =$$

$$S \rightarrow NP \ VP \ \text{1.0}$$

$$VP
ightarrow V$$
 0.2
 $VP
ightarrow V$ NP 0.4
 $VP
ightarrow VP$ PP 0.4

$$NP
ightarrow NP \ PP \ \ 0.3$$
 $NP
ightarrow D \ N \ \ 0.5$ $NP
ightarrow PN \ \ 0.2$

$$PP \rightarrow P NP 1.0$$

$$N o girl$$
 0.2

$$N \rightarrow telescope 0.7$$

$$N \rightarrow sandwich \ {\it 0.1}$$

$$PN o I$$
 1.0

$$V \rightarrow saw$$
 0.5

$$V \rightarrow ate \ 0.5$$

$$P \rightarrow with 0.6$$

$$P \rightarrow in$$
 0.4

$$D \rightarrow a \; {
m 0.3}$$

$$D \rightarrow the \ \textbf{0.7}$$

 $p(T) = 1.0 \times$

$$S \rightarrow NP \ VP \ \textbf{1.0}$$

$$VP \rightarrow V$$
 0.2 $VP \rightarrow V$ NP 0.4 $VP \rightarrow VP$ PP 0.4

$$NP \rightarrow NP \ PP \ \textbf{0.3}$$

 $NP \rightarrow D \ N \ \textbf{0.5}$
 $NP \rightarrow PN \ \textbf{0.2}$

 $PP \rightarrow P NP 1.0$

$$N
ightarrow girl$$
 0.2 $N
ightarrow telescope$ 0.7 $N
ightarrow sandwich$ 0.1 $PN
ightarrow I$ 1.0 $V
ightarrow saw$ 0.5 $V
ightarrow ate$ 0.5

$$P
ightarrow with$$
 0.6
$$P
ightarrow in$$
 0.4
$$D
ightarrow a$$
 0.3

 $D \rightarrow the \ \textbf{0.7}$

$$p(T) = 1.0 \times 0.2 \times$$

$$S \rightarrow NP \ VP \ \textbf{1.0}$$

$$VP \rightarrow V$$
 0.2 $VP \rightarrow V$ NP 0.4 $VP \rightarrow VP$ PP 0.4

$$NP \rightarrow NP \ PP \ \textbf{0.3}$$

 $NP \rightarrow D \ N \ \textbf{0.5}$
 $NP \rightarrow PN \ \textbf{0.2}$

$$PP \rightarrow P \ NP \ \textbf{1.0}$$

$$N o girl$$
 0.2

$$N \rightarrow telescope$$
 0.7

$$N \rightarrow sandwich$$
 0.1

$$PN
ightarrow I$$
 1.0

$$V \rightarrow saw$$
 0.5

$$V \rightarrow ate \ 0.5$$

$$P \rightarrow with 0.6$$

$$P \rightarrow in$$
 0.4

$$D \rightarrow a$$
 0.3

$$D \rightarrow the \ \textbf{0.7}$$

$$p(T) = 1.0 \times 0.2 \times 1.0 \times$$

$$S \rightarrow NP \ VP \ \textbf{1.0}$$

$$VP
ightarrow V$$
 0.2
 $VP
ightarrow V$ NP 0.4
 $VP
ightarrow VP$ PP 0.4

$$NP \rightarrow NP \ PP \ \ 0.3$$
 $NP \rightarrow D \ N \ \ 0.5$ $NP \rightarrow PN \ \ 0.2$

$$PP \rightarrow P \ NP \ \textbf{1.0}$$

$$N o girl$$
 0.2

$$N \rightarrow telescope$$
 0.7

$$N \rightarrow sandwich \ {
m 0.1}$$

$$PN
ightarrow I$$
 1.0

$$V \rightarrow saw$$
 0.5

$$V \rightarrow ate \ 0.5$$

$$P \rightarrow with 0.6$$

$$P \rightarrow in$$
 0.4

$$D o a$$
 0.3

$$D \rightarrow the \ \textbf{0.7}$$

$$p(T) = 1.0 \times 0.2 \times 1.0 \times 0.4 \times$$

$$S \rightarrow NP \ VP \ 1.0$$

$$VP \rightarrow V$$
 0.2 $VP \rightarrow V$ NP 0.4 $VP \rightarrow VP$ PP 0.4

$$PP \rightarrow P \ NP \ \textbf{1.0}$$

$$N o girl$$
 0.2

$$N \rightarrow telescope$$
 0.7

$$N \rightarrow sandwich$$
 0.1

$$PN o I$$
 1.0

$$V
ightarrow saw$$
 0.5

$$V \rightarrow ate \ 0.5$$

$$P \rightarrow with 0.6$$

$$P \rightarrow in$$
 0.4

$$D \rightarrow a \ {
m 0.3}$$

$$D \rightarrow the \ \textbf{0.7}$$

$$p(T) = 1.0 \times 0.2 \times 1.0 \times 0.4 \times 0.5 \times$$

$$S \rightarrow NP \ VP \ 1.0$$

$$VP
ightarrow V$$
 0.2 $VP
ightarrow V$ NP 0.4

$$VP \rightarrow VP \ PP \ \textbf{0.4}$$

$$NP
ightarrow NP \ PP \ exttt{0.3}$$
 $NP
ightarrow D \ N \ exttt{0.5}$ $NP
ightarrow PN \ exttt{0.2}$

$$PP \rightarrow P \ NP \ 1.0$$

$$N \to girl$$
 0.2

$$N \rightarrow telescope$$
 0.7

$$N \rightarrow sandwich$$
 0.1

$$PN o I$$
 1.0

$$V \rightarrow saw$$
 0.5

$$V \rightarrow ate \ 0.5$$

$$P \rightarrow with \ {
m 0.6}$$

$$P \rightarrow in$$
 0.4

$$D
ightarrow a$$
 0.3

$$D \rightarrow the \ \textbf{0.7}$$

$$p(T) = 1.0 \times 0.2 \times 1.0 \times 0.4 \times 0.5 \times 0.3 \times$$

$$S \rightarrow NP \ VP \ \textbf{1.0}$$

$$VP \rightarrow V$$
 0.2 $VP \rightarrow V$ NP 0.4

$$VP \rightarrow VP \ PP \ \textbf{0.4}$$

$$NP
ightarrow NP \ PP \ \ 0.3$$
 $NP
ightarrow D \ N \ \ 0.5$ $NP
ightarrow PN \ \ 0.2$

$$PP \rightarrow P \ NP \ 1.0$$

$$N \rightarrow girl$$
 0.2

$$N \rightarrow telescope$$
 0.7

$$N \rightarrow sandwich$$
 0.1

$$PN
ightarrow I$$
 1.0

$$V \rightarrow saw \ \textbf{0.5}$$

$$V \rightarrow ate \ 0.5$$

$$P \rightarrow with \ {
m 0.6}$$

$$P \rightarrow in$$
 0.4

$$D
ightarrow a$$
 0.3

$$D \rightarrow the \ \textbf{0.7}$$

$$p(T) = 1.0 \times 0.2 \times 1.0 \times 0.4 \times 0.5 \times 0.3 \times 0.5 \times 0.5$$

 $0.5 \times 0.3 \times$

 $p(T) = 1.0 \times 0.2 \times 1.0 \times 0.4 \times 0.5 \times 0.3 \times$

$$S \rightarrow NP \ VP \ 1.0$$

$$VP \rightarrow V$$
 0.2 $VP \rightarrow V$ NP 0.4 $VP \rightarrow VP$ PP 0.4

$$NP
ightarrow NP \ PP \ \ 0.3$$
 $NP
ightarrow D \ N \ \ 0.5$ $NP
ightarrow PN \ \ 0.2$

$$PP \rightarrow P \ NP \ 1.0$$

$$N \to girl$$
 0.2

$$N \rightarrow telescope$$
 0.7

$$N \rightarrow sandwich$$
 0.1

$$PN o I$$
 1.0

$$V \rightarrow saw$$
 0.5

$$V \rightarrow ate \ 0.5$$

$$P \rightarrow with 0.6$$

$$P \rightarrow in \ \textbf{0.4}$$

$$D
ightarrow a$$
 0.3

$$D \rightarrow the \ \text{0.7}$$

$$S \rightarrow NP \ VP \ \textbf{1.0}$$

$$VP \rightarrow V$$
 0.2 $VP \rightarrow V$ NP 0.4 $VP \rightarrow VP$ PP 0.4

$$NP
ightarrow NP \ PP \ \ 0.3$$
 $NP
ightarrow D \ N \ \ 0.5$ $NP
ightarrow PN \ \ \ 0.2$

$$PP \rightarrow P \ NP \ 1.0$$

$$N o girl$$
 0.2

$$N \rightarrow telescope$$
 0.7

$$N \rightarrow sandwich$$
 0.1

$$PN
ightarrow I$$
 1.0

$$V \rightarrow saw \ \textbf{0.5}$$

$$V \rightarrow ate \ 0.5$$

$$P \rightarrow with 0.6$$

$$P \rightarrow in$$
 0.4

$$D
ightarrow a$$
 0.3

$$D \rightarrow the \ \textbf{0.7}$$

$$p(T) = 1.0 \times 0.2 \times 1.0 \times 0.4 \times 0.5 \times 0.3 \times 0.5 \times 0.3 \times 0.2$$

S

0.5

saw

 $\overline{\mathrm{VP}}$

ΝP

0.3

0.2

girl

NP

0.3

 $\hat{\mathrm{P}}_{\mathsf{0.6}}$

with

NP

PN

0.2

1.0

$$S \rightarrow NP \ VP \ 1.0$$

$$N \rightarrow girl$$
 0.2

$$N \rightarrow telescope$$
 0.7

$$N \rightarrow sandwich \ {
m 0.1}$$

$$PN o I$$
 1.0

$$V \rightarrow saw$$
 0.5

$$V \rightarrow ate \ 0.5$$

$$P \rightarrow with 0.6$$

$$P \rightarrow in$$
 0.4

$$D \rightarrow a \; {
m 0.3}$$

$$D \rightarrow the \ \textbf{0.7}$$

$$VP \rightarrow V$$
 0.2
 $VP \rightarrow V$ NP 0.4

$$VP \rightarrow V \ NP \$$
 0.4
 $VP \rightarrow VP \ PP \$ 0.4

$$NP \rightarrow NP \ PP \ \textbf{0.3}$$
 $NP \rightarrow D \ N \ \textbf{0.5}$ $NP \rightarrow PN \ \textbf{0.2}$

$$PP \rightarrow P \ NP \ 1.0$$

$$p(T) = 1.0 \times 0.2 \times 1.0 \times 0.4 \times 0.5 \times 0.3 \times 0.5 \times 0.3 \times 0.5 \times 0.3 \times 0.2 \times 1.0 \times 0.6 \times 0.5 \times 0.3 \times 0.7$$
$$= 2.26 \times 10^{-5}$$

PP_{1.0}

0.3

NP

telescope

Distribution over trees

- We defined a distribution over production rules for each nonterminal
- Our goal was to define a distribution over parse trees

Unfortunately, not all PCFGs give rise to a proper distribution over trees, i.e. the sum over probabilities of all trees the grammar can generate may be less than 1: $\sum_T P(T) < 1$

Distribution over trees

- We defined a distribution over production rules for each nonterminal
- Our goal was to define a distribution over parse trees

Unfortunately, not all PCFGs give rise to a proper distribution over trees, i.e. the sum over probabilities of all trees the grammar can generate may be less than 1: $\sum_{T} P(T) < 1$

 Good news: any PCFG estimated with the maximum likelihood procedure are always proper [Chi and Geman, 98]

Distribution over trees

- Let us denote by $\,G(x)\,$ the set of derivations for the sentence $\,x\,$
- The probability distribution defines the scoring $\ P(T)$ over the trees $T \in G(x)$
- Finding the best parse for the sentence according to PCFG:

$$\underset{T \in G(x)}{\operatorname{arg\,max}} P(T)$$

Summary

- CKY is an important tool, used in many applications
- PCFGs
- Next time:
 - Estmation of PCFGs, CKY for PCFGs,
 - 'Vanilla' PCFGs weakness and how to address them
 - Grammar refinement and neutralized models

- Next week
 - Last lecture on Tuesday
 - No lecture on Wednesday
 - Revision and Q&A session on Friday