
FNLP Tutorial 2

1 The Softmax Function

The softmax function takes an arbitrary vector v as input, with |v| dimensions. It computes an
output vector, also of |v| dimensions, whose ith element is given by:

softmax(v)i =
exp(vi)∑|v|
j=1 exp(vj)

1. What is the purpose of the softmax function?

Solution The softmax converts an arbitrary vector of |v| dimensions into a valid categorical
probability distribution over |v| possible outcomes. In particular it ensures that all individual
elements (probabilities) are non-negative and sum to one.

2. What is the purpose of the expression in the numerator?

Solution The numerator ensures that all values are positive. Note that this is stronger
than needed: the axioms of probability simply require all values to be non-negative. But
exponentiation is only zero in the (negative) limit.

3. What is the purpose of the expression in the denominator?

Solution The denominator normalises the distribution so that all individual probabilities
sum to one.

2 Feed-forward neural networks

Consider a two-layer neural network with the topology visualised below, with the corresponding
weights and bias values in the table. The hidden layer is followed by a non-linear function: the
ReLU. The output layer is followed by a non-linear function too: the softmax. Read up on those
functions and how to work with feedforward neural networks in sections 7.1 to 7.3 from J&M (only
available in the 3rd edition!).

The network can be used for simple classification for three output classes. An input (consisting
of features x1 and x2) belongs to one of the three classes, and you will classify an example input.

x1

x2

h1

h2

h3

y1

y2

y3

Input layer Hidden layer Output layer
wx1,h1 = 0.23 bh1 = 0.13 wh1,y1 = 0.02 by1 = 0.31
wx1,h2 = −2.90 bh2 = 0.90 wh1,y2 = −0.13 by2 = −0.18
wx1,h3 = −0.45 bh3 = 0.24 wh1,y3 = 0.47 by3 = −0.56
wx2,h1 = 1.10 wh2,y1 = −0.88
wx2,h2 = 0.05 wh2,y2 = 1.74
wx2,h3 = −0.01 wh2,y3 = −0.09

wh3,y1 = −0.55
wh3,y2 = 0.72
wh3,y3 = −2.22

1

1. Compute the class an input with x1 = 1.50, x2 = 3.11 would belong to. Show the intermediate
computations, not just the final class.

Solution Firstly, let’s compute the activation of the nodes in the hidden layers. This requires
combining the inputs with the weights, adding the bias, and applying the ReLU function:
ah1

= ReLU(1.50 · 0.23 + 3.11 · 1.10 + 0.13) = ReLU(3.896) = 3.896
ah2

= ReLU(1.50 · −2.90 + 3.11 · 0.05 + 0.90) = ReLU(−3.2945) = 0
ah3 = ReLU(1.50 · −0.45 + 3.11 · −0.01 + 0.24) = ReLU(−0.4661) = 0

Secondly, let’s compute the activation of the output nodes before computing the softmax.
We need all three outputs to be able to apply the softmax:
ay1

= 3.896 · 0.02 + 0 + 0 + 0.31 = 0.38792
ay2 = 3.896 · −0.13 + 0 + 0 +−0.18 = −0.68648
ay3 = 3.896 · 0.47 + 0 + 0 +−0.56 = 1.27112
Now, as a final step, we can apply the softmax to turn the outputs into probabilities:

p1 = exp(0.38792)
exp(0.38792)+exp(−0.68648)+exp(1.27112) ≈ 0.266

p2 = exp(−0.68648)
exp(0.38792)+exp(−0.68648)+exp(1.27112) ≈ 0.091

p3 = exp(1.27112)
exp(0.38792)+exp(−0.68648)+exp(1.27112) ≈ 0.643

This input is categorised with class 3!

2. Now imagine that you want to perform classification, but one input can belong to multiple
classes. For example, when classifying a sentence with an emotion, that sentence can capture
both anger and despair. To enable multi-class classification in this network, what adaptation
would you make to its structure or the non-linear functions it uses?

Solution A rather complicated solution would be creating output classes that represent
multiple classes. For example, for 3 output classes, we would create separate output nodes for
classes (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3). This is the wrong solution due to the
complexity it adds to the network.
The most straightforward solution is replacing the non-linear function of the output layer with
a sigmoid function, that computes a value between 0 and 1 for each class, and by thresholding
that value, one would know whether an input belongs to that class or not.

3. Going back to the original example with x1 = 1.50, x2 = 3.11, use back-propagation to compute
the derivative of each parameter if the gold label for that example was y = 1 (corresponding
with the first class). Assume we use cross-entropy as the loss function:

L(x) = −
∑
i

pi(x) log qi(x)

Where pi(x) is the target probability of the i-th class for the gold labels (in this case, p1(x) = 1,
p2(x) = 0, p3(x) = 0) and qi(x) is the probability the network assigns to the i-th class.

Solution We will use the notation that ŷi is the output after the softmax function, and yi
is before the softmax. Similarly, we will use hi to refer to the hidden layer value before the
ReLU, and ĥi after the ReLU

We start with the first partial derivative:

dL

dŷi
=

{
− 1

ŷ1
i = 1

0 i = 2, 3

2

From our lectures, dsoftmax(x)i
dxj

= softmax(x)i[δi(j) − softmax(x)j]. Applying the chain rule
dL
dyi

= dL
dŷ1

ŷ1

dyi
, we have:

dL

dyi
=

{
−(1− ŷ1) i = 1

ŷi i = 2, 3

We can now compute the derivative for the bias and parameters of the last layer:

dL

dwĥi,yj

=
dL

dyj
ĥi =

−3.896(1− 0.266) 3.896 · 0.091 3.896 · 0.643
0(1− 0.266) 0 · 0.091 0 · 0.643
0(1− 0.266) 0 · 0.091 0 · 0.643

 =

−2.8597 0.3545 2.5051
0 0 0
0 0 0


For the bias, we have dL

dbyi
= dL

dyi
, therefore dL

db =
(
−0.734 0.091 0.643

)
.

We have that
dyj

dĥi
= wĥi,yj

; the ReLU derivative (again, from the lectures) is

dReLU(x)

dx
=

{
1 if x > 0

0 else

so, we only need to compute dL
dh1

since ah2 = ah3 = 0, therefore dL
dh2

= dL
dh3

= 0. We have that
dyi

dh1
= wĥ1,yi

dL

dh1
=

∑
j

dL

dyj

dyj
dh1

= −0.734 · 0.02− 0.091 · 0.13 + 0.643 · 0.47 = 0.2757

Computing the gradient for the weights of the first layer becomes very similar to the previous
step:

dL

dwxi,hj

=
dL

dhj
xi =

(
0.2757 · 1.5 0 · 1.5 0 · 1.5
0.2757 · 3.11 0 · 3.11 0 · 3.11

)
=

(
0.4136 0 0
0.8574 0 0

)
For the bias, we have dL

dbh1
= dL

dh1
, therefore dL

dbh1
= 0.2757. We also have that dL

dbh2
= dL

dbh3
= 0.

4. What are the benefits of back-propagation?

Solution Notice that we have just computed the partial derivatives of 22 parameters, which
involved as well computing the partial derivatives of hi and yi before and after the activation
function (so, in total, 34 partial derivatives!). In back-propagation, we iterate backwards from
the last layer to avoid redundant calculations of intermediate terms in the chain rule, thus
resulting in very efficient compute.

5. Update the parameters of the first layer, following simple gradient descent. Assume a learning
rate µ = 0.1.

Solution For wxi,hj :

wxi,hj
=

(
0.23 2.90 0.45
1.10 0.05 0.01

)
− 0.1

(
0.4136 0 0
0.8574 0 0

)
=

(
0.19 2.90 0.45
1.01 0.05 0.01

)
For bhi

:
bhi

=
(
0.13 0.90 0.24

)
− 0.1

(
0.2575 0 0

)
=

(
0.10 0.90 0.24

)

3

	The Softmax Function
	Feed-forward neural networks

