FNLP Tutorial 4

1 Parallelization of transformers

One of the greatest advantages of the Transformer model is that it is possible to parallelise its
computation, and therefore train a model on much larger training datasets (for example, for pre-
training) with less compute.

1. Consider an encoder-decoder RNN model, following up on the question before. Can the com-
putation of the encoder be easily parallelised with respect to the number of tokens (meaning,
can you break the input and the computation into chunks such that they run in parallel)?
Explain why or why not.

2. Consider the Transformer encoder layer. Explain why its computation can be paralleised over
tokens per layer. Can computation be easily parallelised across layers?

2 Self-attention mechanism

1. The QKV attention can be viewed as an operation on a query vector ¢ € R, a set of value
vectors {vq,...,v,}, v; € R, and a set of key vectors {ki,...,k,}, ki € RY, specified as

follows: .
CcC = Z ;U (1)
i=1
= =t
S exp(k]q)
with oy, ..., a, termed the “attention weights”. Observe that the output ¢ € R? is an average
over the value vectors weighted to a.
(a) Try to construct a set of queries {qi,...,qn}, values and keys so that the output ¢
for an incoming query g; is always equal to some value vector v;, i.e. Vg; — 3Jj €
{1,...,n} s.it. ¢=v;. Explain what properties about the sets of values, keys and queries

would be desirable to achieve this.

(b) Now, let’s move to the case with only two key and value vectors, e.g. n = 2. What query
vector would have exactly the same attention to both value vectors (i.e. @1 = ag = 0.5)7

3 KV Cache

In an auto-regressive Language Model (LM), only one token gets produced at a time by conditioning
on previously generated tokens. A key component of these models is the self-attention mechanism,
which allows each token to attend to others in the sequence, determining how much influence each
token should have on the next prediction.

1. Consider the sequence of N = 3 tokens The cat is. Write the matrix form of self-attention,
specifying the key, query and value vectors for each token.



2. For an output sequence of length N, what is the time complexity of the self-attention mecha-
nism?

3. Imagine we generated the sequence The cat is, and want to generate the next token. What
new operations do we need to perform now?

4. What is the time complexity of, given a sequence of N tokens, generating an additional token?

5. Imagine that we decide that, for every new token that we compute, we will store all the vectors
that will be reused to compute new tokens. What vectors will we store?

6. This caching mechanism, typically known as KV Cache, significantly speeds up text generation.
However, KV cache requires additional memory. How would this scale with context length?
References

[1] Albert Gu and Tri Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces.
arXiv preprint arXiv:2312.00752, 2024. https://arxiv.org/abs/2312.00752


https://arxiv.org/abs/2312.00752

	Parallelization of transformers
	Self-attention mechanism
	KV Cache

