
FNLP Tutorial 3

Question 1. A bigram language model

We are given the following corpus, modified from J&M (Chapter 3 in the 3rd edition):

<s> language is awesome </s>
<s> language is awesome </s>
<s> language and students </s>
<s> awesome students like language </s>

1. Using a bigram language model without smoothing, generate 4 sentences, starting from ‘<s>’.
To generate sentences manually, randomly choose a real number between 0 and 1, and use the
cumulative probabilities of words in the vocabulary to select a word from the language model.
For example, if there are two words in the vocabulary with non-zero conditional probabilities
P (one|<s>) = 0.25 and P (two|<s>) = 0.75, then choosing a random number between 0 and
0.25 would result in ‘one’, whereas a random number between 0.25 and 1 would result in ‘two’.

2. How does the lack of smoothing impact the novelty of the sentences generated?

3. How does the nature of the corpus impact the lengths of the generated sentences?

Prefix (Non-zero) Conditional probabilities

<s> P (language|<s>) = 3
4

P (awesome|<s>) = 1
4

and P (students|and) = 1
awesome P (</s>|awesome) = 2

3
P (students|awesome) = 1

3

is P (awesome|is) = 1
language P (is|language) = 1

2
P (and|language) = 1

4
P (</s>|language) = 1

4

like P (language|like) = 1
students P (</s>|students) = 1

2
P (like|students) = 1

2

Table 1: The non-zero conditional probabilities of the language model discussed in Exercise 2.1.

Solution

1. Table 1 provides the non-zero conditional probabilities that can be used to generate sentences
for this question. Some example sentences that can be generated, are:

• <s> awesome students like language and students like language </s>

• <s> awesome students </s>

• <s> language </s>

• <s> language is awesome students like language </s>

• <s> language is awesome </s>

• <s> language </s>
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• <s> awesome </s>

• <s> language </s>

• <s> awesome </s>

• <s> language and students like language is awesome students like language and students
like language and students like language is awesome students like language </s>

2. The language model can generate sentences that are novel (i.e. that were not in the training
corpus). In fact, 9 out of 10 example sentences above were not in the training corpus. However,
every bigram does exist in the training corpus, so the language model is severely limited in
the sentences it can generate.

3. The average lengths of the training corpus (5.25) and the generated sentences above (5.7) do
not vary greatly, but the standard deviations—0.4 and 6.5, respectively—do. This is due to the
presence of words that can appear in multiple positions in the sentence: ‘awesome’, ‘language’
and ‘students’. As a result, a sentence can end after one word, or can restart when one would
expect it to end.

1 Question 2. Word vectors

Consider the following two-dimensional word vectors that encode animals. They are projections of
300-dimensional word vectors, that were trained using data from all over the web.

−→
dog=

[
1.9
2.07

]
,−−−−→puppy=

[
2.04
1.82

]
,
−−−−−→
puppies=

[
2.15
1.77

]
,
−→
cat=

[
1.63
1.87

]
−−−→
kitten=

[
1.68
1.76

]
,
−−−→
snake=

[
0.25
1.44

]
,
−−−−−→
monkey=

[
0.02
1.56

]
,
−−−−−→
monkeys=

[
−0.04
1.59

]
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1. Visually inspect the word vectors. Distances in the vector space capture word similarities
(albeit strongly simplified when using only two dimensions). Why would ‘snake’ (a reptile) be
closer to ‘monkey’ (a mammal) compared to the remaining animals (that are also mammals)?
Please refer to the distributional hypothesis and the way word vectors are constructed in your
answer.

Solution According to the distributional hypothesis words that occur in similar contexts
tend to have similar meanings. This is reflected in the point in the vector space we associate
with a word: other points in its neighbourhood will occur in similar contexts. The contexts
come from the training corpus. For arbitrary content from the web concerning animals, we
expect pets like dogs and cats to appear in similar contexts. The same might hold for wildlife
like a monkey and a snake, but it seems less likely that a cat and a snake appear in similar
contexts.
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The question suggests the vectors could have reflected the mammal vs. reptile difference, but
this difference is not as prominent from text as the very different habitats of pets and wildlife.
Were the vectors trained on a specialised corpus about biological evolution or the anatomy of
animals, they probably would reflect that difference more.

2. Word vectors can capture relationships between words, as discussed in J&M Section 6.10, 3rd
edition. An example of such a relationship is an analogy, such as Edinburgh is to Scotland
as Canberra is to . . . ? When we have word vectors, we can use the parallelogram method to

solve analogies: by subtracting
−−−−−−−→
edinburgh from

−−−−−→
scotland and adding

−−−−−−→
canberra. You would pick

the word for which the word vector has the smallest distance to the resulting vector. J&M
represent the procedure as follows for the analogy a:b::a*:b* (a is to b as a* is to b*):

−→
b ∗ = argmin distance−→x (

−→x ,
−→
b −−→a +−→a ∗) (1)

Using Euclidean distances, compute
−→
b ∗ for:

• −→a =
−→
dog,

−→
b = −−−−→puppy and −→a ∗ =

−→
cat

• −→a = −−−−→puppy,
−→
b =

−−−−−→
puppies and −→a ∗ =

−−−−−→
monkey

Solution

•
−→
b −−→a +−→a ∗ =

[
2.04
1.82

]
−
[
1.9
2.07

]
+

[
1.63
1.87

]
=

[
1.77
1.62

]
word distance

dog
√
(1.9− 1.77)2 + (2.07− 1.62)2 ≈ 0.47

puppy
√
(2.04− 1.77)2 + (1.82− 1.62)2 ≈ 0.34

puppies
√

(2.15− 1.77)2 + (1.77− 1.62)2 ≈ 0.41

cat
√

(1.63− 1.77)2 + (1.87− 1.62)2 ≈ 0.29

kitten
√

(1.68− 1.77)2 + (1.76− 1.62)2 ≈ 0.17

snake
√

(0.25− 1.77)2 + (1.44− 1.62)2 ≈ 1.53

monkey
√

(0.02− 1.77)2 + (1.56− 1.62)2 ≈ 1.75

monkeys
√

(−0.04− 1.77)2 + (1.59− 1.62)2 ≈ 1.81

The word vector for ‘kitten’ has the minimum distance, hence the vectors suggest
dog:puppy::cat:kitten, which makes perfect sense!

•
−→
b −−→a +−→a ∗ =

[
2.15
1.77

]
−
[
2.04
1.82

]
+

[
0.02
1.56

]
=

[
0.13
1.51

]
word distance

dog
√
(1.9− 0.13)2 + (2.07− 1.51)2 ≈ 1.85

puppy
√
(2.04− 0.13)2 + (1.82− 1.51)2 ≈ 1.93

puppies
√

(2.15− 0.13)2 + (1.77− 1.51)2 ≈ 2.04

cat
√

(1.63− 0.13)2 + (1.87− 1.51)2 ≈ 1.54

kitten
√

(1.68− 0.13)2 + (1.76− 1.51)2 ≈ 1.57

snake
√

(0.25− 0.13)2 + (1.44− 1.51)2 ≈ 0.14

monkey
√

(0.02− 0.13)2 + (1.56− 1.51)2 ≈ 0.12

monkeys
√

(−0.04− 0.13)2 + (1.59− 1.51)2 ≈ 0.19

Dependent on whether we exclude a, b and a* as potential answers or not, ‘monkey’ or

‘snake’ is closest, which, unfortunately, is not ‘monkeys’. The vector
−−−−−→
monkeys is close

to
−−−−−→
monkey in the vector space, but the relationship is not analogical to the one between−−−−−→

puppies and −−−−→puppy.
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3. Retrieve the word that is the most similar to ‘monkey’ using cosine similarity, euclidean dis-
tance and the dot product. Where do the different metrics disagree, and how does this relate
to their definition?

Solution We collected the similarities below. For both the Euclidean distance and the
cosine similarity, the word most similar to ‘monkey’ is ‘monkeys’, but the dot product suggests
‘dog’ is the most similar to ‘monkey’. This is due to the impact of the vectors’ norm on the
computation of the dot product (Equation 2), since there is no length normalisation.

dot(u⃗, v⃗) =

d∑
i=1

u⃗iv⃗i (2)

word Euclidean dist. cosine dist. dot product
monkey 0.00 0.00 2.43
dog 1.95 0.25 3.27
puppy 2.04 0.32 2.88
puppies 2.14 0.35 2.80
cat 1.64 0.24 2.95
kitten 1.67 0.27 2.78
snake 0.26 0.01 2.25
monkeys 0.07 0.00 2.48

4. Explain how Euclidean distance, the dot product and the cosine similarity are related.

Solution The cosine similarity represents the cosine of the angle between two input vectors,
and is the dot product normalised by the norms of the two vectors (Equation 3). The relation
between the cosine similarity and the Euclidean distance may not be clear directly. After
all, two vectors in the same direction can be very distant as per the Euclidean distance, but
still very similar according to the cosine similarity. However, for normalised vectors, they
are related, as is illustrated in Equations 4 and 5. If u⃗ and v⃗ have length 1, ED(u⃗, v⃗)2 =
2− 2dot(u⃗, v⃗).

cosθu,v =
dot(u⃗, v⃗)

∥u⃗∥∥v⃗∥
(3)

ED(u⃗, v⃗) =

√√√√ d∑
i=1

(v⃗i − u⃗i)2 =

√√√√ d∑
i=1

(v⃗iv⃗i − 2v⃗iu⃗i + u⃗iu⃗i) =

√√√√ d∑
i=1

v⃗iv⃗i +

d∑
i=1

u⃗iu⃗i − 2

d∑
i=1

v⃗iu⃗i

(4)

ED(u⃗, v⃗)2 =

d∑
i=1

v⃗iv⃗i +

d∑
i=1

u⃗iu⃗i − 2

d∑
i=1

v⃗iu⃗i (5)
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Question 3. Model design

The next problem looks at how to apply neural models to a classical problem in NLP: part-of-speech
(POS) tagging. POS tags are labels assigned to each word in a sentence to indicate their grammatical
role in the sentence. For example:

i = 1 2 3 4 5 6 7 8 9 10
xi = Each day starts with one or two lectures by researchers
yi = DT NN VBZ IN CD CC JJR NNS IN NNS

Common categories are Nouns (N), Pronouns (PRP), Verbs (VB), Adjectives (JJ), Adverbs
(RB), Prepositions (IN), Determiners (DT), Conjunctions (CC) and Interjections(UH). There are
also more fine-grained categories: word day in the sentence is a singular noun (NN). However, the
same word can have different PoS tags, depending on the context.

Given an input sentence x = x1 . . . x|x|, we want to predict the corresponding tag sequence
y = y1 . . . y|x|. Let xi denote the ith word of x, yi denote the ith word of y, and |x| denote the
length of x. Note that |y| = |x|. We have access to many training examples like this, and our goal
is to model the conditional probability of the tag sequence given the sentence, that is: P (y | x).
There are many possible choices here. To simplify the problem, let’s assume that each element of y
is conditionally independent of each other. That is, we want to model:

P (y | x) =
|y|∏
i=1

P (yi | x)

1. Design a feedforward neural network to model P (yi | x): clearly define the probability being
computed and how it is estimated, and specify the input and output vocabulary, as well as the
objective function used for training. Identify any independence assumptions you make. Draw
a diagram that illustrates how the model computes probabilities for the tag of the word “with”:
What is the input, and how is the output distribution computed from the input? Write out
the basic equations of the model, and explain your choices.

Solution An effective design for the feedforward network is to model P (yi | xi−k, . . . , xi+k)
for some fixed window size 2k + 1. You might, for example, use something like this:

P (yi | xi−k, . . . , xi+k) = softmax(Wh+ b2)

h = tanh(Vx+ b1)

x = onehot(xi−k); . . . ; onehot(xi+k)

Here, the semicolon (;) denotes concatenation. The choice of non-linearity is not important
for this question, but since it asks for a feedforward network, you should have a hidden layer.
This is about the simplest possible model.

Note that your solution should not depend on previous tags, since the question explicitly
assumes that the tags are conditionally independent.

2. Design an RNN to model P (yi | x): clearly define the probability being computed and how it
is estimated, and specify the input and output vocabulary, as well as the objective function
used for training. Identify any independence assumptions you make. Draw a diagram that
illustrates how the model computes probabilities for the tag of the word “with”: What is
the input, and how is the output distribution computed from the input? Write out the basic
equations of the model, and explain your choices.

Solution One design for the RNN is to model P (yi | x1, . . . , xi). That is, the RNN reads
x1 through xi one step at a time, and at the ith step produces a distribution for possible
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tags yi. For simplicity, let’s use RNN to denote a unit that receives an input and a previous
hidden state, and produces a new hidden state; it can easily be replaced with an LSTM or
other recurrent unit of your choice:

P (yi | x1 . . . xi) = softmax(Whi + b)

hi = RNN(onehot(xi),hi−1)

One thing you might notice here is that, while this model conditions on all words the left of
xi, it does not use any words to its right! Because of this, the feedforward network might have
an advantage. Can you think of a reason why you should not use k words of right context in
this model?

3. Can you model P (yi | x) without independence assumptions, using multiple RNNs?

Solution A bidirectional RNN can model P (yi | x1, . . . , x|x|). It consists of two RNNs, each
with its own set of parameters: one that encodes from left to right (RNN), and one that
encodes from right to left (RNN′). Again using the semicolon to denote concatenation:

P (yi | x1 . . . x|x|) = softmax(W(hi;h
′
i) + b)

hi = RNN(onehot(xi),hi−1)

h′
i = RNN′(onehot(xi),h

′
i+1)

For each question, the goal is to design a simple model for the distribution. You solution should
only use architectures that we discussed in the first four weeks of the course. If you are aware of
other architectures, you should not use them here.
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