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Last time: Naive Bayes

e Given document x and set of categories Y (say, spam/not-spam),
we want to assigh x to the most probable category 7.

y = argmax P(y|r)
yey

= argmax P(x|y)P(y)
yey

e The naive Bayes assumption: features are conditionally
independent given the class.

P(f1, f2, .- fuly) = P(fily) P(f2ly) - .- P(faly)

e That is, the prob. of a word occurring depends only on the class.
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Alternative feature values and feature sets

e Use only binary values for f;: did this word occur in d or not?

e Use only a subset of the vocabulary for F

— Ignore stopwords (function words and others with little content)
— Choose a small task-relevant set (e.g., using a sentiment
lexicon)

e Use more complex features (bigrams, syntactic features,
morphological features, ...)
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Task-specific features

e And for other tasks, stopwords might be very useful features
— E.g., People with schizophrenia use more 2nd-person pronouns

(?), those with depression use more lst-person (7).

e Probably better to use too many irrelevant features than not
enough relevant ones.
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Advantages of Naive Bayes

e Very easy to implement
e Very fast to train and test
e Doesn't require as much training data as some other methods

e Usually works reasonably well

Use as a simple baseline for any classification task.
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Problems with Naive Bayes

e Naive Bayes assumption is naive!
e Consider categories TRAVEL, FINANCE, SPORT.
e Are the following features independent given the category?

beach, sun, ski, snow, pitch, palm, football, relax, ocean
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Problems with Naive Bayes

e Naive Bayes assumption is naive!

e Consider categories TRAVEL, FINANCE, SPORT.

e Are the following features independent given the category?
beach, sun, ski, snow, pitch, palm, football, relax, ocean

e No! They might be closer if we defined finer-grained categories
(beach vacations vs. ski vacations), but we don't usually want to.
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Non-independent features

e Features are not usually independent given the class

e Adding multiple feature types (e.g., words and morphemes) often
leads to even stronger correlations between features

e Accuracy of classifier can sometimes still be ok, but it will be
highly overconfident in its decisions.

— Ex: NB sees 5 features that all point to class 1, treats them as
five independent sources of evidence.

— Like asking 5 friends for an opinion when some got theirs from
each other.

lvan Titov FNLP Lecture 5 7



A less naive approach

e Although Naive Bayes is a good starting point, often we have
enough training data for a better model (and not so much that
slower performance is a problem).

e \We may be able to get better performance using loads of features

and a model that doesn't assume features are conditionally
independent.

e Namely, a multinomial logistic regression model.
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Multinomial Logistic Regression

e Used widely in many different fields, under many different names

e Most commonly, multinomial logistic regression
— multinomial if more than two possible classes

— otherwise (or if lazy) just logistic regression

e Also called: max-ent classifier, log-linear model, one-layer neural
network, single neuron classifier, etc ...
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Naive Bayes vs Logistic Regression

e Like Naive Bayes, Logistic Regression assigns a document x to
class 7, where

y = argmax P(y|z)
yey

e Unlike Naive Bayes, we do not apply Bayes' Rule. Instead, we
model P(y|z) directly.
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Logistic Regression is a discriminative
model

e |t is trained to discriminate correct vs. incorrect values of v,
given input x. That's all it can do.

e Naive Bayes can also generate data: sample a class from P(y),
then sample words from P(x|y). So, we call it a generative
model.
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Discriminative models more broadly

Generative o8 og e Discriminative
S pxly = 2)
p(x| )
Learn: data distribution p(x, y) = p(x|y) - p(y) Learn: boundary between classes p(y|x)
How predict: y = arg ml?xp(x’y = k) = How predict: y = arg ml‘::;\x P(y = le)

=argm}§1xP(x|y =k)-P(y=k)
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Discriminative models even more broadly

e Trained to discriminate correct vs. wrong values of vy, given
Input .

e Need not be probabilistic.

e Examples: various neural networks, decision trees, nearest
neighbor methods, support vector machines

e Here, we consider only one method: logistic regression models,
which are probabilistic.
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Example: classify by topic

e Given a web page document, which topic does it belong to?

— 2 is the words in the document, plus info about headers and
links.

— v is the unknown class. Assume three possibilities:

y = class

1 TRAVEL
2 SPORT

3 FINANCE
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Feature functions

e Like Naive Bayes, Logistic Regression models use features we
think will be useful for classification.

e For example, we could have a binary corresponding to each token
(word) in the vocabulary:

f1: contains(‘ski’)
fo: contains(‘sun’)

fn: contains(‘antidisestablishmentarianism’)
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Classification with LR

Choose the class that has highest probability according to

P(y = k|z) ——eXp Zw fi(z

where the normalization constant Z = ), exp(> . w, )f( )

(k
— Inside brackets is just a dot product: s*) = w(¥) . f(z).
— Z does not depend on £
— So, we will end up choosing class k for which s*) is highest.

— Softmax function: exponentiation of scores s, followed by
normalization to turn into a distribution
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Schematic view of logistic regression
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Classification example

f1: contains(‘ski’) (1) = 1.2
2
§ ) =23
w%g) = —0.5
fo: link to(‘expedia.com’) (1) = 4.6
(2) — 09
3
g ) =05
f3: num_links wél) = 0.0
(2) — 09
(3) — 01

— f3 is a numeric feature that counts outgoing links.
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Classification example

— Suppose our test document contains ski and 6 outgoing links.
— We don't know class y for this doc, so we try out each possible
value.

* Travel: ). wgl)fi(x) = 1.2+ (0.0)(6) = 1.2.
« Sport: S w\ ) fi(z) = 2.3 4 (0.2)(6) = 3.5.

* Finance: ) . w,fs)fi(x) = —0.5+ (—0.1)(6) = —1.1.
— We'd need to do further work to compute the probability of each
class, but we know already that SPORT will be the most probable.

lvan Titov FNLP Lecture 5 19



Feature templates

— In practice, features are usually defined using templates

contains (w)
header_contains (w)
header_contains(w) & link_in_header

x Instantiate with all possible words w
x usually filter out features occurring very few times
— NLP tasks often have a few templates, but 1000s or 10000s of

features

20
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Training: conditional likelihood

— Examples (1) ... (") are annotated with labels y(1) ... y(V)
— The conditional likelihood (CL) of a model is given by the
probability of labels under the model

O — Hj p(y(j)’x(j))
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Training: conditional likelihood

— Examples (1) ... (") are annotated with labels y(1) ... y(V)
— The conditional likelihood (CL) of a model is given by the
probability of labels under the model

CL — P9 )
|| R0
— In practice, we work with conditional log-likelihood:
CLL — loo P(y9) ()
D Jog P(y[a)
— Choose weights that maximize conditional log-likelihood CLL.:

W = argmax Zj log P(y\9]29))
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Training the model: cross-entropy

— Think of the target label y(7) as a distribution over classes,
pY) — 0,...,1,...,0), where Py)(y(j)) = 1 and the rest are Os
— cross-entropy loss for a training set is defined as

losscp = Y S‘ PU) 1083P(y‘5’7(]))

Model prediction: Target P
— = > ﬁ
0
0
0

lvan Titov FNLP Lecture 5 23



Training the model: cross-entropy

— Think of the target label yl9) as a distribution over classes,
pY) — (0,...,1,...,0), where Pf])(y(ﬂ) = 1 and the rest are Os
— cross-entropy loss for a training set is defined as

losscp = Y Y ey P(J) ) - log P(y\x(J))

Model prediction: Target P
— = > ﬁ
0
0
0

— Since P is a one-hot vector
losscp = — Zlog P(yW|zW)y = —CLL
J
— So maximizing CLL and minimizing CE loss is equivalent
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Regularisation: Weight Decay

Simply minimising the conditional (log-)likelihood may lead to
overfitting (decreasing the training loss while increasing the
generalisation loss).

An inductive bias for our parameters is Occam’s razor: our
solution should be ‘simple’.

Weight decay (or L, regularisation) adds the Ly norm of the
parameters to the loss, such that:

— argmin— 3" log fu(x) + Alull
xeD

where A Is an importance hyper-parameter. This corresponds to
a Bayesian prior N(0,\711).
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Training: gradient descent

W — Random() -

repeat N o
w—w+1n-Vy Zlog Py |z09))

until Converged()




Training: mini-batch gradient descent

w < Random/()

repeat
B < RandomSubset([1, ..., N]|)

W 4w+ 1 Vy Z log P(y\9)|z\))
jEB

until Converged|() j




How does the gradient look like?

Py = k|z) = = 7 CXP (Z wg@ﬁ:(ﬂ?))
Y|
= Zexp (Zw( )fz )

k=1
Let us consider a single component of the gradient,
corresponding to a specific feature | and specific class k



How does the gradient look like?

Py = k|z) = = 7 CXP (Z wg“ﬁ:(ﬂf))
Y|
= Zexp (Zw( )fz )

k=1
Let us consider a single component of the gradient,
corresponding to a specific feature | and specific class k

For example, corresponding to

d N , et
log P(yP]z0)) = fi: contains(‘ski’)

dwl(k)

Contribution Qf the annotated
document (), y9)) to the loss




How does the gradient look like?

Py = k|z) = = 7 CXP (Z wg@ﬁ:(ﬂ?))
Y|
= Zexp (Zw( )fz )

k=1
Let us consider a single component of the gradient,
corresponding to a specific feature | and specific class k

d
dwl(k)

d o | dlog 7
1o (e (ol ) ) ) - 2
i dw,

dwl( )

log P(y(j)]x(j)) —




How does the gradient look like?

Py = k|z) = = 7 CXP (Z wg@ﬁ:(ﬂ?))
Y|
= Zexp (Zw( )fz )

k=1
Let us consider a single component of the gradient,
corresponding to a specific feature | and specific class k

d
dwl(k)

d j . dlog Z
5 19g<e/;qs (Z w§y( ))fi(x(7>)>> doi) =(I) — (1I1)

log P(y(j)]x(j)) —




First term (1)

(D) =

(Z w§y(”>fz-<a:<j>>>

d
dwl(k)



First term (I)

(D) =

(Z w§y(”>fi<a:<j>>>

It is guaranteed to be O if yU) £k, otherwise - fl($(j))
Let’s re-write it as

d
dwl(k)



First term (1)

1) = d (Z wgy(j))fi(x(j))>

dwl(k)

It is guaranteed to be O if yU) £k, otherwise - fl($(j))
Let’s re-write it as

= [y = k] fi(zD)

[ .]is the lverson bracket:

p

0 1f S1s false

1 1f Sis true,



Second term (ll)

dlog Z
dwl(k)

(1) =



Second term (ll)

(11) = dlog Z _ d

dwl(k) dwl(k)




Second term (ll)

Y|
dlog Z d / .
(1) = —25 = () 108 (Z o (Z wi™ fi(@)

dwl(k) dw, B —1

07 g €XD (Zi w;” )fz'(f(j)))
_— l

> 1/ €XD (ZZ wgk,)fi(x(J)))

()

N

% log(x) =1/x

)



Second term (ll)

Y|
(1) =SO85 = g (Z exp (Z w§’“’)f7:(w<”>>)

()

k
dwl( ) dw, B —1
5 e (5 a9
Y e (2, wl fi(@))

dwd<k>' €xXp (Zi wgk)fi(iﬁ(j)))
l
/




Second term (ll)

() =

[

k=1 1

ﬁl(k) D e €XD (Zi wy" )fz'(ﬂﬁ(j)))
l

Zk/ exXp (Zz wz(k

,)fi(x(j)))

dwd(_m exp (Zz wz(k)fz‘(x(j)))
l

Z

Y]
dlog Z d L/ -
0®  de® (EI xp (E i fi(a?)
[

exp (S wf? fi(eD)) 2 (S0l fia))

—

<

d

dzx

exp(z) = exp()

'\\

)



Second term (ll)

dlogZ  d X D
(IT) = o — ~ log Z exp sz £ (2\9))
Wi

dwl( ) k!=1 i

Tl i exp (2- w§k’>fz-<x<ﬂ'>>)
S exp (3, w™ fi(20))

st oxp (S wf fi(a))
A
exp (Z wy f; (0 )))

5 (Ziw fie9)

dw
A4
( (k)fz (J))>

= P(y = k|z\W)

1
P(y = k|z) = — exp (Z wi® fi(x)



Second term (ll)

dlogZ  d i W
(IT) = ) — ~ log Zexp sz £ (2\9))
Wi

dwl( ) k!=1 i

ﬁ‘l(k) D €XP (Z w§k/)f¢(a:<j)))
> exp (30w fi(20)))

T d(k) exXp (Z W; (37(])))
Z
exp (Z w( >f (2 >))

5 (2wl fi(a)

dw
Z
( w(k)fz (J))j

The featL/ re value weighted by
= P(y = k|x 3) the probability assigned to the
‘considered class k y

= P(y = kl2)) -

~



Bringing everything together

d

gy los Py la) = (1) — (1)
[

[yl

)= k] fi(zY)) = P(y = K|z - f(2\9))
— ([y(j) — k] — P(y = k|37(j>))fl(x(j))



Bringing everything together

d N
e log P(y\|z\) = (1) — (1)
= [y = k] - fi(29D)) — P(y = K|z - f;(2\9))
= (YY) = k] = P(y = klz))) fi(«D)
e

e

What is the sign of this expression & ?




Bringing everything together

d N
e log P(y\|z\) = (1) — (1)
= [y = k] - fi(29D)) — P(y = K|z - f;(2\9))
= (YY) = k] = P(y = klz))) fi(«D)
e

What is the sign of this expression & ? .
Negative if the k-class is incorrect. (i.e &k # y\) )
Positive if the k-th class is correct




Bringing everything together

d ui(,ﬂ) log P(yP[c9)) = (1) — (11
= [y = k] - fi(29D)) — P(y = K|z - f;(2\9))
= (¥ = k] — P(y = k|z\9)) fu(z"))

«

Let's see what happens to the probability

P(y = Ko?) = — exp (Z wgk)fi(:v(j)))
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Let's see what happens to the probability

. 1 :
Py = k|zW)) = - ©XP (wfk)fl(x(”) + .. )



Bringing everything together

d ui(,ﬂ) log P(y?aP) = (1) — (11
= [y = k] - fi(29D)) — P(y = K|z - f;(2\9))
= (Y = k] — P(y = k|lz")) fi(z\7))

«

Let's see what happens to the probability

. 1 :
Py = k|zW)) = - ©XP (wfk)fl(x(”) + .. )

Recall that the form of update is

K " dlog P(y|x\9))
w® — w® 4. ((k)\
dw,




Bringing everything together

d ui(,ﬂ) log P(y?aP) = (1) — (11
= [y = k] - fi(29D)) — P(y = K|z - f;(2\9))
= (Y = k] — P(y = k|lz")) fi(z\7))

«

Let's see what happens to the probability

. 1 :
Py = k|zW)) = - ©XP (wfk)fl(x(”) + .. )

Recall that the form of update is

w® — w4 p.a fi(zV)



Bringing everything together

d ui(,ﬂ) log Py |e@)) = (1) — (I1)
= [y = k] - fi(aV) = P(y = k|zV)) - fi(aD)
= (Y = k] — P(y = k|lz")) fi(z\7))

«

Let's see what happens to the probability

. 1 :
Py = k|zW)) = - ©XP (wfk)fl(x(”) + .. )

Recall that the form of update is
w® — w4 p.a fi(zV)

1

Py = ko)) = — exp ((w®+n-a- fi2 ) fizD) + ...



Bringing everything together

d ui““) log P(y?aP) = (1) — (11
= [y = k] - fi(29D)) — P(y = K|z - f;(2\9))
= (Y = k] — P(y = k|lz")) fi(z\7))

«

Let's see what happens to the probability

. 1 :
Py = k|zW)) = - ©XP (wl(k)fl(x(”) + .. )

Recall that the form of update is
w® — w4 p.a fi(zV)

P(y = klzV)) = %GXP (0 fi@D)+n - D)+ )
/

>0 >0



Bringing everything together

d ui““) log P(y?aP) = (1) — (11
= [y = k] - fi(29D)) — P(y = K|z - f;(2\9))
= (Y = k] — P(y = k|lz")) fi(z\7))

«

Let's see what happens to the probability
1
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Recall that the form of update is
w® — w4 p.a fi(zV)
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< 0, otherwise



Bringing everything together

d ui(,ﬂ) log P(y?aP) = (1) — (11
= [y = k] - fi(29D)) — P(y = K|z - f;(2\9))
= (Y = k] — P(y = k|lz")) fi(z\7))

«

Let's see what happens to the probability

. 1 :
Py = k|zW)) = - ©XP (wfk)fl(x(”) + .. )

Py = k|z\W) target

Recall that the form of update is
w® — w4 p.a fi(zV)

: 1 . .
Py = kl2@) = Z exp (wf" fia?) - o 20+

Z —
/ ‘
<0 >0 if kis correct >0
< 0, otherwise



Bringing everything together
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Bringing everything together

d ui““ log P(y?aP) = (1) — (11
= [y = k] - fi(29D)) — P(y = K|z - f;(2\9))
= (¥ = k] — P(y = k|z\9)) fu(z"))

«

_—

When is & close to zero?




Bringing everything together

d ui(,ﬂ) log P(yP[c9)) = (1) — (11
= [y = k] - fi(29D)) — P(y = K|z - f;(2\9))
= (¥ = k] — P(y = k|z\9)) fu(z"))

«

_—

Close to zero if the classifier confidently predicts the

correct class ,
1 if yV) =k

Py = k|lzU)) ~
(y ’ ) {0 otherwise
o /

If the classifier is already confident, gradient is close to O
and no learning is happening




Relation to Naive Bayes

f1: contains(‘ski’) w)’ =log P(‘ski'lc = 1)
w?) = log P(‘ski’|c = 2)
wg ) = log P(‘ski’|c = 3)
fo: contains(‘beach’) wél) — log P(‘beach’|c = 1)
wéZ) = log P(‘beach’|c = 2)
wég) = log P(‘beach’|c = 3)
fz: 1 wél) =log P(c=1)
wéz) = log p(c = 2)
w:gg) — log P(c = 3)
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Relation to Naive Bayes (continued)

— Naive Bayes is also a linear classifier, and can be expressed in the
same form

— Should the features be actually independent (will never happen),
they would converge to the same solution as the amount of
training data increases
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Schematic view of logistic regression

Bias (scalar) for each class, makes it
easier to encode class priors (no
need for f3= 1 in NB example)

Probability
distribution over
classes

Vectors for Scores for
each class each clas

‘_m » . 1 (3) "3'

o (+ ; ) softmax [
v [@eee)— w? - [(+b?)) © —
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Feature representation
of text

Some manual features
(e.g., bag of words)
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NB vs MaxEnt dependence on dataset size

Theoretical results: generative classifiers converge faster with training set size to
their optimal error [Ng & Jordan, NeurlIPS 2001]

Empirical:
voling records (discrele)
0.4
0.3
A discriminative classifier
§‘ : r
5'12 A generative model
0.1 -
Predicting Democrat 0: s : .
vs Republican, based 20 '?E =l 20

on voting records _
# train examples
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The downside to Logistic Regressions

— Supervised MLE in generative models is easy: compute counts

and normalize.
— Supervised CMLE in LR model not so easy
x requires multiple iterations over the data to gradually improve

weights (using gradient ascent).
+ each iteration computes P(y\/)|zU)) for all j.

x this can be time-consuming, especially if there are a large
number of classes and/or thousands of features to extract from

each training example.
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Robustness: LR and Naive Bayes

— Imagine that in training there is one very frequent predictive
feature
x E.g., In training sentiment data contained emoticons but not at
test time
— The model can quickly learn to rely on this feature
x model is confident on examples with emoticons
x the gradient on these examples gets close to zero
x the model does not learn other features
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Robustness (continued)

— In LR, a feature weight will depend on the presence of other
predictive features
— Naive Bayes will rely on all features
x The weight of a feature is not affected by how predictive other
features are
— This makes NB more robust that (basic) Logistic Regression when
test data is (distributionally) different from train data
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Schematic view of logistic regression

Bias (scalar) for each class, makes it
easier to encode class priors (no
need for f3= 1 in NB example)

Vectors for ~ Scores for Probability

distribution over
each class each clas
classes
i (3) 0
oo v ST Olgoftmax
(@B e8}— w? - f(+b>) © =
u;<3) w® . (—i—b(d)) ©

Feature representation
of text

Some manuatfeatures We will soon replace feature
(e.g., o) OI’C|S) engineering with learnable features
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Summary

— Two methods for text classification: Naive Bayes and Logistic
Regression

— Make different independence assumptions, have different training
requirements.

— Both are easily available in standard ML toolkits.
*x But you now also know how to implement them!

— Both require some work to figure out what features are good to
use.
x Soon, we will see how to alleviate the need for feature engineering
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