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Last time: Naive Bayes

• Given document x and set of categories Y (say, spam/not-spam),

we want to assign x to the most probable category ŷ.

ŷ = argmax
y∈Y

P (y|x)

= argmax
y∈Y

P (x|y)P (y)

• The naive Bayes assumption: features are conditionally

independent given the class.

P (f1, f2, . . . fn|y) ≈ P (f1|y)P (f2|y) . . . P (fn|y)

• That is, the prob. of a word occurring depends only on the class.

Ivan Titov FNLP Lecture 5 1



Alternative feature values and feature sets

• Use only binary values for fi: did this word occur in d or not?

• Use only a subset of the vocabulary for F

– Ignore stopwords (function words and others with little content)
– Choose a small task-relevant set (e.g., using a sentiment

lexicon)

• Use more complex features (bigrams, syntactic features,

morphological features, ...)
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Task-specific features

• And for other tasks, stopwords might be very useful features

– E.g., People with schizophrenia use more 2nd-person pronouns

(?), those with depression use more 1st-person (?).

• Probably better to use too many irrelevant features than not

enough relevant ones.
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Advantages of Naive Bayes

• Very easy to implement

• Very fast to train and test

• Doesn’t require as much training data as some other methods

• Usually works reasonably well

Use as a simple baseline for any classification task.
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Problems with Naive Bayes

• Naive Bayes assumption is naive!

• Consider categories Travel, Finance, Sport.

• Are the following features independent given the category?

beach, sun, ski, snow, pitch, palm, football, relax, ocean

Ivan Titov FNLP Lecture 5 5



Problems with Naive Bayes

• Naive Bayes assumption is naive!

• Consider categories Travel, Finance, Sport.

• Are the following features independent given the category?

beach, sun, ski, snow, pitch, palm, football, relax, ocean

• No! They might be closer if we defined finer-grained categories

(beach vacations vs. ski vacations), but we don’t usually want to.
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Non-independent features

• Features are not usually independent given the class

• Adding multiple feature types (e.g., words and morphemes) often

leads to even stronger correlations between features

• Accuracy of classifier can sometimes still be ok, but it will be

highly overconfident in its decisions.

– Ex: NB sees 5 features that all point to class 1, treats them as

five independent sources of evidence.

– Like asking 5 friends for an opinion when some got theirs from

each other.
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A less naive approach

• Although Naive Bayes is a good starting point, often we have

enough training data for a better model (and not so much that

slower performance is a problem).

• We may be able to get better performance using loads of features

and a model that doesn’t assume features are conditionally

independent.

• Namely, a multinomial logistic regression model.
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Multinomial Logistic Regression

• Used widely in many different fields, under many different names

• Most commonly, multinomial logistic regression

– multinomial if more than two possible classes

– otherwise (or if lazy) just logistic regression

• Also called: max-ent classifier, log-linear model, one-layer neural

network, single neuron classifier, etc ...
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Naive Bayes vs Logistic Regression

• Like Naive Bayes, Logistic Regression assigns a document x to

class ŷ, where

ŷ = argmax
y∈Y

P (y|x)

• Unlike Naive Bayes, we do not apply Bayes’ Rule. Instead, we

model P (y|x) directly.
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Logistic Regression is a discriminative
model

• It is trained to discriminate correct vs. incorrect values of y,

given input x. That’s all it can do.

• Naive Bayes can also generate data: sample a class from P (y),

then sample words from P (x|y). So, we call it a generative
model.
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Discriminative models more broadly
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Discriminative models even more broadly

• Trained to discriminate correct vs. wrong values of y, given

input x.

• Need not be probabilistic.

• Examples: various neural networks, decision trees, nearest

neighbor methods, support vector machines

• Here, we consider only one method: logistic regression models,

which are probabilistic.
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Example: classify by topic

• Given a web page document, which topic does it belong to?

– x is the words in the document, plus info about headers and

links.

– y is the unknown class. Assume three possibilities:

y = class

1 Travel

2 Sport

3 Finance
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Feature functions

• Like Naive Bayes, Logistic Regression models use features we

think will be useful for classification.

• For example, we could have a binary corresponding to each token

(word) in the vocabulary:

f1 : contains(‘ski’)

f2 : contains(‘sun’)

. . . . . .

fn : contains(‘antidisestablishmentarianism’)
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Classification with LR

Choose the class that has highest probability according to

P (y = k|x) = 1

Z
exp

(∑
i

w
(k)
i fi(x)

)
where the normalization constant Z =

∑
k′ exp(

∑
iw

(k′)
i fi(x))

– Inside brackets is just a dot product: s(k) = w(k) · f(x).
– Z does not depend on k

– So, we will end up choosing class k for which s(k) is highest.

– Softmax function: exponentiation of scores s, followed by

normalization to turn into a distribution
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Schematic view of logistic regression

Some manual features 

(e.g., bag of words)

I like cats Input text

Vectors for 

each class
Scores for 

each class
Probability distribution 

over classes

Feature representation 

of text



Classification example

f1 : contains(‘ski’) w
(1)
1 = 1.2

w
(2)
1 = 2.3

w
(3)
1 = −0.5

f2 : link to(‘expedia.com’) w
(1)
2 = 4.6

w
(2)
2 = −0.2

w
(3)
2 = 0.5

f3 : num links w
(1)
3 = 0.0

w
(2)
3 = 0.2

w
(3)
3 = −0.1

– f3 is a numeric feature that counts outgoing links.
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Classification example

– Suppose our test document contains ski and 6 outgoing links.

– We don’t know class y for this doc, so we try out each possible

value.

∗ Travel:
∑

iw
(1)
i fi(x) = 1.2 + (0.0)(6) = 1.2.

∗ Sport:
∑

iw
(2)
i fi(x) = 2.3 + (0.2)(6) = 3.5.

∗ Finance:
∑

iw
(3)
i fi(x) = −0.5 + (−0.1)(6) = −1.1.

– We’d need to do further work to compute the probability of each

class, but we know already that Sport will be the most probable.

Ivan Titov FNLP Lecture 5 19



Feature templates

– In practice, features are usually defined using templates
contains(w)

header contains(w)

header contains(w) & link in header

∗ instantiate with all possible words w

∗ usually filter out features occurring very few times

– NLP tasks often have a few templates, but 1000s or 10000s of

features
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Training: conditional likelihood

– Examples x(1) . . . x(N) are annotated with labels y(1) . . . y(N)

– The conditional likelihood (CL) of a model is given by the

probability of labels under the model

CL =
∏

j
P (y(j)|x(j))
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Training: conditional likelihood

– Examples x(1) . . . x(N) are annotated with labels y(1) . . . y(N)

– The conditional likelihood (CL) of a model is given by the

probability of labels under the model

CL =
∏

j
P (y(j)|x(j))

– In practice, we work with conditional log-likelihood:

CLL =
∑

j
logP (y(j)|x(j))

– Choose weights that maximize conditional log-likelihood CLL:

ŵ = argmax
w

∑
j
logP (y(j)|x(j))
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Training the model: cross-entropy
– Think of the target label y(j) as a distribution over classes,

P
(j)
∗ = (0, . . . , 1, . . . , 0), where P

(j)
∗ (y(j)) = 1 and the rest are 0s

– cross-entropy loss for a training set is defined as

lossCE = −
∑

j

∑
y∈Y

P (j)
∗ (y) · logP (y|x(j))
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Training the model: cross-entropy
– Think of the target label y(j) as a distribution over classes,

P
(j)
∗ = (0, . . . , 1, . . . , 0), where P

(j)
∗ (y(j)) = 1 and the rest are 0s

– cross-entropy loss for a training set is defined as

lossCE = −
∑

j

∑
y∈Y

P (j)
∗ (y) · logP (y|x(j))

– Since P
(j)
∗ is a one-hot vector

lossCE = −
∑
j

logP (y(j)|x(j)) = −CLL

– So maximizing CLL and minimizing CE loss is equivalent
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Regularisation: Weight Decay

Simply minimising the conditional (log-)likelihood may lead to

overfitting (decreasing the training loss while increasing the

generalisation loss).

An inductive bias for our parameters is Occam’s razor: our

solution should be ‘simple’.

Weight decay (or L2 regularisation) adds the L2 norm of the

parameters to the loss, such that:

ŵ = argmin−
∑
x∈D

log fw(x) + λ||w||22

where λ is an importance hyper-parameter. This corresponds to

a Bayesian prior N (0, λ−1I).
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Training:  gradient descent

Random initialization (e.g., 

from a Gaussian 

distribution)

Common strategy: finish 

when the performance on 

the development set stops 

improving (or after a fixed 

number of iterations)

Learning rate: a scalar 

regulating how much you 

update on every example



Training:  mini-batch gradient descent

Choosing a “batch”: Indexes of a 

random subset of examples (e.g.,  

choose 10 random examples)

Sum only over examples in 

the current batch



Let us consider a single component of the  gradient, 

corresponding to a specific feature l and specific class k 

How does the gradient look like?



Let us consider a single component of the  gradient, 

corresponding to a specific feature l and specific class k 

How does the gradient look like?

For example, corresponding to

Contribution of the annotated 

document                  to the loss
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Let us consider a single component of the  gradient, 

corresponding to a specific feature l and specific class k 

How does the gradient look like?
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First term (I)

It is guaranteed to be 0 if                ,   otherwise -             

Let’s re-write it as



First term (I)

[ . ] is the Iverson bracket:

It is guaranteed to be 0 if                ,   otherwise -             

Let’s re-write it as
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Second term (II)



Second term (II)



Second term (II)



Second term (II)



Second term (II)



Second term (II)

The feature value weighted by 

the probability assigned to the 

considered class k
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Bringing everything together

What is the sign of this expression    ?



Bringing everything together

What is the sign of this expression    ?

Negative if the k-class is incorrect. (i.e                   ) 

Positive if the k-th class is correct
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Bringing everything together

Let’s see what happens to the probability

Recall that the form of update is

if k is correct

, otherwise



Bringing everything together

Let’s see what happens to the probability

Recall that the form of update is

if k is correct

, otherwise

target



Bringing everything together

Let’s see what happens to the probability

Recall that the form of update is

if k is correct

, otherwise

target



Bringing everything together

When is      close to zero? 



Bringing everything together

Close to zero if the classifier confidently predicts the 

correct class

If the classifier is already confident, gradient is close to 0 

and no learning is happening



Relation to Naive Bayes

f1 : contains(‘ski’) w
(1)
1 = log P̂ (‘ski′|c = 1)

w
(2)
1 = log P̂ (‘ski′|c = 2)

w
(3)
1 = log P̂ (‘ski′|c = 3)

f2 : contains(‘beach’) w
(1)
2 = log P̂ (‘beach′|c = 1)

w
(2)
2 = log P̂ (‘beach′|c = 2)

w
(3)
2 = log P̂ (‘beach′|c = 3)

f3 : 1 w
(1)
3 = log P̂ (c = 1)

w
(2)
3 = log P̂ (c = 2)

w
(3)
3 = log P̂ (c = 3)
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Relation to Naive Bayes (continued)

– Naive Bayes is also a linear classifier, and can be expressed in the

same form

– Should the features be actually independent (will never happen),

they would converge to the same solution as the amount of

training data increases
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Schematic view of logistic regression

Some manual features 

(e.g., bag of words)

I like cats Input text

Vectors for 

each class

Scores for 

each class

Probability 

distribution over 

classes

Feature representation 

of text

Bias (scalar) for each class,  makes it 

easier to encode class priors (no 

need for f3 = 1 in NB example)



• Theoretical results: generative classifiers  converge faster with training set size to 
their optimal error  [Ng & Jordan, NeurIPS 2001]

• Empirical:

A discriminative classifier

A generative model

Predicting Democrat 
vs Republican, based 
on voting records

# train examples



The downside to Logistic Regressions

– Supervised MLE in generative models is easy: compute counts

and normalize.

– Supervised CMLE in LR model not so easy

∗ requires multiple iterations over the data to gradually improve

weights (using gradient ascent).

∗ each iteration computes P (y(j)|x(j)) for all j.

∗ this can be time-consuming, especially if there are a large

number of classes and/or thousands of features to extract from

each training example.
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Robustness: LR and Naive Bayes

– Imagine that in training there is one very frequent predictive

feature

∗ E.g., in training sentiment data contained emoticons but not at

test time

– The model can quickly learn to rely on this feature

∗ model is confident on examples with emoticons

∗ the gradient on these examples gets close to zero

∗ the model does not learn other features
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Robustness (continued)

– In LR, a feature weight will depend on the presence of other
predictive features

– Naive Bayes will rely on all features

∗ The weight of a feature is not affected by how predictive other

features are

– This makes NB more robust that (basic) Logistic Regression when

test data is (distributionally) different from train data
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Schematic view of logistic regression

Some manual features 

(e.g., bag of words)

I like cats Input text

Vectors for 

each class

Scores for 

each class

Probability 

distribution over 

classes

Feature representation 

of text

We will soon replace feature 

engineering with learnable features

Bias (scalar) for each class,  makes it 

easier to encode class priors (no 

need for f3 = 1 in NB example)



Summary

– Two methods for text classification: Naive Bayes and Logistic

Regression

– Make different independence assumptions, have different training

requirements.

– Both are easily available in standard ML toolkits.

∗ But you now also know how to implement them!

– Both require some work to figure out what features are good to

use.

∗ Soon, we will see how to alleviate the need for feature engineering
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