
Lecture 8
Backpropagation and Gradient Descent

Ivan Titov

(with slides from Edoardo Ponti)

Ivan Titov Lecture 8

Forward and Backward Pass

Last lectures: forward pass (inference): from a document x to

the conditional probability over the classes pθs(y | x), given current

parameters θs.

p(y | x) = fforward(x, θs)

This lecture: backward pass (training): from a loss function
(divergence between true and predicted probabilities) ℓ(·) to

updated parameters θs+1.

θs+1 = fbackward(ℓ(·), θs)

Ivan Titov Lecture 8 1

Recap: Loss function

Minimizing the negative conditional log-likelihood (or

maximizing conditional log-likelihood):

argmin
θ̂

∑
x,y∈D

− log pθ̂(y|x)

In this lecture, we will treat y as a one-hot vector, i.e. a vector where

the component corresponding to the ground-truth (i.e. annotated)

class is set to 1, and the rest are set to 0.

Ivan Titov Lecture 8 2

Recap: Parameter update

• Generally, we cannot find the solution to the minimisation problem

analytically.

• Instead, we resort to numerical methods to find an approximately

optimal solution by iteratively updating the parameters:

θs+1 = θs − update size× update direction

Ivan Titov Lecture 8 3

A parameter update step

More formally:

θs+1 = θs − η︸︷︷︸
update size

×∇θ

(
−
∑
x∈D

log fθs(x)

)
︸ ︷︷ ︸

update direction

where η is the learning rate (the size of a training step).

∇θ denotes the gradient of a function (here, the loss ℓ(·)) with

respect to a variable θ.

Intuitively, the gradient points to the direction of steepest ascent
in the function. By subtracting it, we reduce the loss function value

(more on this later).

Ivan Titov Lecture 8 4

Recap: Gradient Descent Algorithm

An optimisation algorithm will start from a parameter initialisation

θ0 and perform update steps until a stopping criterion C(·) is met.

Require: data D, loss function ℓ(·)
initial parameters θ0
learning rate η

stopping criterion C(·)→ {True, False}
s← 0

while s < S do
θs+1 = θs − η ×∇θ ℓ(θ,D)
if C(·) = True then

return θs

s← s+ 1

return θS

Ivan Titov Lecture 8 5

Parameter Initialisation

The approximate solution found by gradient descent (and its quality)

depends on the parameter initialisation θ0 (especially for deep neural

networks).

Commonly, θ0 is randomly sampled from a Uniform or Normal

distribution.

Ivan Titov Lecture 8 6

Stopping Criteria

Examples of stopping criteria include:

• Convergence: when the difference between parameters before

and after the update is smaller than a threshold: θs+1 − θs < τ .

• Early stopping: when the negative log likelihood (NLL) on a

development step stops decreasing (or classification performance

stops increasing).

Ivan Titov Lecture 8 7

Learning Rate

The learning rate η, which determines the step size, is a hyper-

parameter.

The choice of its value constitutes a trade-off between the rate of

convergence and the risk of overshooting θ⋆.

Different values can be scheduled for different optimisation steps

(e.g. η can be linearly or exponentially decayed).

Some optimisers (e.g., Adam) contrary to SGD allow for parameter-

specific learning rates (e.g., based on the second-order momentum
of the gradient).

Ivan Titov Lecture 8 8

Recup: Mini-batch/Stochatc Gradient
Descent

Vanilla Gradient Descent requires us to estimate the gradient on the

entire training dataset D, which is unfeasible for large |D|.

Stochastic gradient descent (SGD) instead performs parameter

updates based on mini-batches of data B (i.e., small subsets of

examples sampled i.i.d. from D).

This relies on the fact that:

EB∼D∇θℓ(θ,B) = ∇θℓ(θ,D)

This means that a gradient obtained from a mini-batch is an

unbiased estimator of a gradient estimated on the full dataset!

Ivan Titov Lecture 8 9

Reminder: Gradient

The gradient is the generalisation to multidimensional variables of

the derivative. Consider this 1-dimensional example:

Ivan Titov Lecture 8 10

Generalising to 2 dimensions

2-dim example: a weight w and a bias b vs their loss (the gradients

are the blue arrows):

Ivan Titov Lecture 8 11

Generalising to more dimensions

For a parameter space Θ ∈ Rn, the gradient becomes a vector with

n dimensions pointing towards the direction of steepest ascent and

with a magnitude proportional to the loss function steepness.

This vector consists of partial derivatives for the individual weights:

∇θℓ(θ,D) =

δ

δw1
ℓ(θ,D)

δ
δw2

ℓ(θ,D)
. . .

δ
δwn

ℓ(θ,D)

Each partial derivative answers the question: how much does a small

change in value for this weight affect the value of the loss function?

Ivan Titov Lecture 8 12

Reminder: Computing the gradient

Consider a 1-layer neural network:

ŷ = f(x) = softmax(W x+ b)

The gradient for the weight Wij given the class y can be computed

as (as we have seen a couple of lectures ago):

δ

δWij
ℓ(f(x)) = −(yi − ŷi)xj

= −
[
yi −

exp(W⊤
i x+ bi)∑

k exp(W
⊤
k x+ bk)

]
xj

Ivan Titov Lecture 8 13

Back-propagation

• This works for this single layer network.

• Very complex to compute the partial derivative for weights of

early layers in deep networks.

• Back-propagation (a.k.a. reverse-mode automatic differentiation),

which relies on computation graphs, is an algorithm that can do

it efficiently!

Ivan Titov Lecture 8 14

Computation Graphs

Representation of the process to compute the feed-forward pass,

where operations (add, multiply, etc.) are nodes and operands are
incoming edges.

Consider a 1-dimensional neuron with a Mean Squared Error loss.

Its computation graph is:

w

x

c = x× w

b

d = c+ b

y

e = y − d ℓ = e2

The backward pass calculates δ
δwℓ and δ

δbℓ

Ivan Titov Lecture 8 15

Reminder: Chain Rule of Differentiation

The chain rule of differentiation states that for a composite function

f(x) = u(v(x)), its derivative can be decomposed as:

df

dx
=

du

dv
· dv
dx

Backprop takes advantage of the chain rule by calculating the

gradient of downstream nodes wrt the root ℓ as the product of the

gradients of all intermediate nodes wrt their children.

Ivan Titov Lecture 8 16

Working through the example

w

x

c = x× w

b

d = c+ b

y

e = y − d ℓ = e2

δℓ
δw = δℓ

δe
δe
δd

δd
δc

δc
δw = 2e×−1× 1× x = −2(y − wx− b)x

δℓ
δb =

δℓ
δe

δe
δd

δd
δb = 2e×−1× 1 = −2(y − wx− b)

Ivan Titov Lecture 8 17

Useful derivatives in NNs

• d softmax(x)i
dxj

= softmax(x)i · [δi(j)− softmax(x)j]

• dReLU(x)
dx =

{
1 if x > 0

0 else

Ivan Titov Lecture 8 18

Summary so far

• Stochastic gradient descent is an optimiser that iteratively updates

the parameter estimate with the (scaled) gradient from mini-

batches of data.

• Back-propagation is an algorithm to calculate the gradient wrt

parameters of deep networks efficiently.

Ivan Titov Lecture 8 19

A concrete example

• How do we calculate the forward and backward pass concretely?

• What is the experimental routine in practice?

• An example with multilayer percetrpon (MLP) with toy vocabulary

V = {duck, goose}, and binary classification

Ivan Titov Lecture 8 20

Experimental Routine

• Training

1. Choose the hyperparameters (architecture and optimiser)

2. Initialise the model

3. Optimise the model with gradient descent

(a) Sample an input–label pair from the data

(b) Perform a forward pass to obtain a prediction

(c) Calculate the loss between the prediction and the label

(d) Back-propagate to get the gradient of the loss wrt parameters

(e) Parameter update

• Evaluation

1. Model selection on the development set

2. Perform inference with the best model

Ivan Titov Lecture 8 21

Producing the Output: The Forward Pass

How to obtain p(y | x1, . . . , xn)

1. h0 = enc(x1, . . . , xn)

2. For every layer 1 ≤ l ≤ L− 1:

• hl = a(Wlhl−1 + bl)

3. ŷ = p(· | x1, . . . , xn) = softmax(WLhL−1)

This is the forward pass for an MLP of arbitrary depth L ∈ N.

Ivan Titov Lecture 8 22

Choosing the hyper-parameters

Assume that we choose the following hyper-parameters for the

architecture: L = 2, a = ReLU, embedding dimension E ∈ R2×|V|

and hidden dimension h ∈ R2.

For the optimiser, we set the learning rate to η = 10−2

Ivan Titov Lecture 8 23

Computation Graph

w12

w22

× +

×

w21

w11

x1

x2

×

×

+

max

max

0

0

b1

b2

u21

u11

u12

u22

×

×

×

×

+

+

exp

exp

+

÷

÷

ŷ1

ŷ2

Ivan Titov Lecture 8 24

Initialising the model
Sample weights from Wij ∼ U(−1, 1) and set the biases to bj = 0

.7

−.3

× +

×

.1

.9

x1

x2

×

×

+

max

max

0

0

0

0

−.5

0

−.9

.3

×

×

×

×

+

+

exp

exp

+

÷

÷

ŷ1

ŷ2

So at t = 0: W =

[
.9 1

.7 −.3

]
, b =

[
0

0

]
, U =

[
0 −.5
−.9 .3

]
, E = . . .

Ivan Titov Lecture 8 25

Training iteration: encode the input

Sample an example from the train data, e.g. “duck duck goose”

Estimate p(y | duck duck goose). In this example, y = [1, 0] (e.g.,

‘text about animals’)
d
u
ck

go
os
e

E =

[
0.05 -0.1

]
-1.5 -0.9

A Bag-of-words encoder (average token embedding):

enc(duck duck goose) =
1

3

([
0.05

−1.5

]
+

[
0.05

−1.5

]
+

[
−0.1
−0.9

])
=

[
0

−1.3

]
Ivan Titov Lecture 8 26

Training iteration: forward pass

.7

−.3

× +

×

.1

.9

0

−1.3

×

×

+

max

max

0

0

0

0

−.5

0

−.9

.3

×

×

×

×

+

+

exp

exp

+

÷

÷

ŷ1 = .423

ŷ2 = .577

h1 = 0

h2 = .39

Ivan Titov Lecture 8 27

Training iteration: calculate the loss

ŷ1 = .423

ŷ2 = .577

y1 = 1

y2 = 0

log

log

×

×

+ ×

−1

ℓ = .861

ℓ = −
∑

y∈C pθ⋆(y) log pθ̂(y)

Ivan Titov Lecture 8 28

Training iteration: calculate the gradient
What is ∇θℓ = ∇[E,W,b,U]ℓ? E.g. to find δℓ

δU
, first get δℓ

δŷ1
and δℓ

δŷ2

ŷ1 = .423

ŷ2 = .577

y1 = 1

y2 = 0

log

log

×

×

+ ×

−1

ℓ = .861

−11

1
1
ŷ1

01
ŷ2

δℓ
δŷ1

= −1× 1× 1× 1
ŷ1

= −2.36

δℓ
δŷ2

= −1× 1× 0× 1
ŷ2

= 0

Ivan Titov Lecture 8 29

Training iteration: calculate the gradient
From ŷ1 and ŷ2, continue to back-propagate to find δℓ

δU
(if a node

has multiple parents, such as exp, sum over all the incoming edges)

.7

−.3

× +

×

.1

.9

0

−1.3

×

×

+

max

max

0

0

0

0

−.5

0

−.9

.3

×

×

×

×

+

+

exp

exp

+

÷

÷

ŷ1 = .423

ŷ2 = .577

δℓ
δŷ1

= −2.36

δℓ
δŷ2

= 0

δℓ
δU =

[
0 −.225
0 .225

]

Ivan Titov Lecture 8 30

Training iteration: parameter update

For the parameter U , SGD performs the following update:

Ut=1 = Ut=0 − η
δℓ

δU

=

[
0 −.5
−.9 .3

]
− 10−2 ×

[
0 −.225
0 .225

]
=

[
0 −.502
−.9 .297

]
Similarly, we will update all the other model parameters E,W,b.

We will repeatedly perform training iterations until the stopping

criterion is met (e.g. after k iterations).

Ivan Titov Lecture 8 31

Model Selection on the Dev Set

Our choice of hyper-parameters for the model architecture and

optimiser at the start were arbitrary.

Grid search defines ranges for each hyper-parameter, then trains

multiple models, one per config (from their Cartesian product).

E.g., if L = {2, 3} and η = {10−2, 10−3}, it will run [L = 2, η =

10−2], [L = 3, η = 10−2], [L = 2, η = 10−3], [L = 3, η = 10−3].

We then compare the performance of these models on the dev set,

and select the best one with parameters θ̂.

Ivan Titov Lecture 8 32

Next Lectures

• Friday, next Tuesday: Distributional semantics - inducing

’meanings’ of word from context

• next Wed: Language modeling (classic approach)

• Friday: back to neural networks, we will be moving from text

classification into language modeling and text generation

Ivan Titov Lecture 8 33

