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Forward and Backward Pass

Last lectures: forward pass (inference): from a document x to

the conditional probability over the classes pθs(y | x), given current

parameters θs.

p(y | x) = fforward(x, θs)

This lecture: backward pass (training): from a loss function
(divergence between true and predicted probabilities) ℓ(·) to

updated parameters θs+1.

θs+1 = fbackward(ℓ(·), θs)
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Recap: Loss function

Minimizing the negative conditional log-likelihood (or

maximizing conditional log-likelihood):

argmin
θ̂

∑
x,y∈D

− log pθ̂(y|x)

In this lecture, we will treat y as a one-hot vector, i.e. a vector where

the component corresponding to the ground-truth (i.e. annotated)

class is set to 1, and the rest are set to 0.
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Recap: Parameter update

• Generally, we cannot find the solution to the minimisation problem

analytically.

• Instead, we resort to numerical methods to find an approximately

optimal solution by iteratively updating the parameters:

θs+1 = θs − update size× update direction
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A parameter update step

More formally:

θs+1 = θs − η︸︷︷︸
update size

×∇θ

(
−
∑
x∈D

log fθs(x)

)
︸ ︷︷ ︸

update direction

where η is the learning rate (the size of a training step).

∇θ denotes the gradient of a function (here, the loss ℓ(·)) with

respect to a variable θ.

Intuitively, the gradient points to the direction of steepest ascent
in the function. By subtracting it, we reduce the loss function value

(more on this later).
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Recap: Gradient Descent Algorithm

An optimisation algorithm will start from a parameter initialisation

θ0 and perform update steps until a stopping criterion C(·) is met.

Require: data D, loss function ℓ(·)
initial parameters θ0
learning rate η

stopping criterion C(·)→ {True, False}
s← 0

while s < S do
θs+1 = θs − η ×∇θ ℓ(θ,D)
if C(·) = True then

return θs

s← s+ 1

return θS
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Parameter Initialisation

The approximate solution found by gradient descent (and its quality)

depends on the parameter initialisation θ0 (especially for deep neural

networks).

Commonly, θ0 is randomly sampled from a Uniform or Normal

distribution.

Ivan Titov Lecture 8 6



Stopping Criteria

Examples of stopping criteria include:

• Convergence: when the difference between parameters before

and after the update is smaller than a threshold: θs+1 − θs < τ .

• Early stopping: when the negative log likelihood (NLL) on a

development step stops decreasing (or classification performance

stops increasing).
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Learning Rate

The learning rate η, which determines the step size, is a hyper-

parameter.

The choice of its value constitutes a trade-off between the rate of

convergence and the risk of overshooting θ⋆.

Different values can be scheduled for different optimisation steps

(e.g. η can be linearly or exponentially decayed).

Some optimisers (e.g., Adam) contrary to SGD allow for parameter-

specific learning rates (e.g., based on the second-order momentum
of the gradient).
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Recup: Mini-batch/Stochatc Gradient
Descent

Vanilla Gradient Descent requires us to estimate the gradient on the

entire training dataset D, which is unfeasible for large |D|.

Stochastic gradient descent (SGD) instead performs parameter

updates based on mini-batches of data B (i.e., small subsets of

examples sampled i.i.d. from D).

This relies on the fact that:

EB∼D∇θℓ(θ,B) = ∇θℓ(θ,D)

This means that a gradient obtained from a mini-batch is an

unbiased estimator of a gradient estimated on the full dataset!
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Reminder: Gradient

The gradient is the generalisation to multidimensional variables of

the derivative. Consider this 1-dimensional example:
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Generalising to 2 dimensions

2-dim example: a weight w and a bias b vs their loss (the gradients

are the blue arrows):
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Generalising to more dimensions

For a parameter space Θ ∈ Rn, the gradient becomes a vector with

n dimensions pointing towards the direction of steepest ascent and

with a magnitude proportional to the loss function steepness.

This vector consists of partial derivatives for the individual weights:

∇θℓ(θ,D) =


δ

δw1
ℓ(θ,D)

δ
δw2

ℓ(θ,D)
. . .

δ
δwn

ℓ(θ,D)


Each partial derivative answers the question: how much does a small

change in value for this weight affect the value of the loss function?
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Reminder: Computing the gradient

Consider a 1-layer neural network:

ŷ = f(x) = softmax(W x+ b)

The gradient for the weight Wij given the class y can be computed

as (as we have seen a couple of lectures ago):

δ

δWij
ℓ(f(x)) = −(yi − ŷi)xj

= −
[
yi −

exp(W⊤
i x+ bi)∑

k exp(W
⊤
k x+ bk)

]
xj
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Back-propagation

• This works for this single layer network.

• Very complex to compute the partial derivative for weights of

early layers in deep networks.

• Back-propagation (a.k.a. reverse-mode automatic differentiation),

which relies on computation graphs, is an algorithm that can do

it efficiently!
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Computation Graphs

Representation of the process to compute the feed-forward pass,

where operations (add, multiply, etc.) are nodes and operands are
incoming edges.

Consider a 1-dimensional neuron with a Mean Squared Error loss.

Its computation graph is:

w

x

c = x× w

b

d = c+ b

y

e = y − d ℓ = e2

The backward pass calculates δ
δwℓ and δ

δbℓ
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Reminder: Chain Rule of Differentiation

The chain rule of differentiation states that for a composite function

f(x) = u(v(x)), its derivative can be decomposed as:

df

dx
=

du

dv
· dv
dx

Backprop takes advantage of the chain rule by calculating the

gradient of downstream nodes wrt the root ℓ as the product of the

gradients of all intermediate nodes wrt their children.
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Working through the example

w

x

c = x× w

b

d = c+ b

y

e = y − d ℓ = e2

δℓ
δw = δℓ

δe
δe
δd

δd
δc

δc
δw = 2e×−1× 1× x = −2(y − wx− b)x

δℓ
δb =

δℓ
δe

δe
δd

δd
δb = 2e×−1× 1 = −2(y − wx− b)
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Useful derivatives in NNs

• d softmax(x)i
dxj

= softmax(x)i · [δi(j)− softmax(x)j]

• dReLU(x)
dx =

{
1 if x > 0

0 else
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Summary so far

• Stochastic gradient descent is an optimiser that iteratively updates

the parameter estimate with the (scaled) gradient from mini-

batches of data.

• Back-propagation is an algorithm to calculate the gradient wrt

parameters of deep networks efficiently.
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A concrete example

• How do we calculate the forward and backward pass concretely?

• What is the experimental routine in practice?

• An example with multilayer percetrpon (MLP) with toy vocabulary

V = {duck, goose}, and binary classification
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Experimental Routine

• Training

1. Choose the hyperparameters (architecture and optimiser)

2. Initialise the model

3. Optimise the model with gradient descent

(a) Sample an input–label pair from the data

(b) Perform a forward pass to obtain a prediction

(c) Calculate the loss between the prediction and the label

(d) Back-propagate to get the gradient of the loss wrt parameters

(e) Parameter update

• Evaluation

1. Model selection on the development set

2. Perform inference with the best model
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Producing the Output: The Forward Pass

How to obtain p(y | x1, . . . , xn)

1. h0 = enc(x1, . . . , xn)

2. For every layer 1 ≤ l ≤ L− 1:

• hl = a(Wlhl−1 + bl)

3. ŷ = p(· | x1, . . . , xn) = softmax(WLhL−1)

This is the forward pass for an MLP of arbitrary depth L ∈ N.
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Choosing the hyper-parameters

Assume that we choose the following hyper-parameters for the

architecture: L = 2, a = ReLU, embedding dimension E ∈ R2×|V|

and hidden dimension h ∈ R2.

For the optimiser, we set the learning rate to η = 10−2
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Computation Graph
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Initialising the model
Sample weights from Wij ∼ U(−1, 1) and set the biases to bj = 0

.7

−.3

× +

×

.1

.9

x1

x2

×

×

+

max

max

0

0

0

0

−.5

0
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.3

×

×

×

×

+

+

exp

exp

+

÷

÷

ŷ1

ŷ2

So at t = 0: W =

[
.9 1

.7 −.3

]
, b =

[
0

0

]
, U =

[
0 −.5
−.9 .3

]
, E = . . .
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Training iteration: encode the input

Sample an example from the train data, e.g. “duck duck goose”

Estimate p(y | duck duck goose). In this example, y = [1, 0] (e.g.,

‘text about animals’)
d
u
ck

go
os
e

E =

[
0.05 -0.1

]
-1.5 -0.9

A Bag-of-words encoder (average token embedding):

enc(duck duck goose) =
1

3

([
0.05

−1.5

]
+

[
0.05

−1.5

]
+

[
−0.1
−0.9

])
=

[
0

−1.3

]
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Training iteration: forward pass
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ŷ1 = .423

ŷ2 = .577

h1 = 0

h2 = .39
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Training iteration: calculate the loss

ŷ1 = .423

ŷ2 = .577

y1 = 1

y2 = 0

log

log

×

×

+ ×

−1

ℓ = .861

ℓ = −
∑

y∈C pθ⋆(y) log pθ̂(y)
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Training iteration: calculate the gradient
What is ∇θℓ = ∇[E,W,b,U ]ℓ? E.g. to find δℓ

δU
, first get δℓ

δŷ1
and δℓ

δŷ2

ŷ1 = .423

ŷ2 = .577

y1 = 1

y2 = 0

log

log

×

×

+ ×

−1

ℓ = .861

−11

1
1
ŷ1

01
ŷ2

δℓ
δŷ1

= −1× 1× 1× 1
ŷ1

= −2.36

δℓ
δŷ2

= −1× 1× 0× 1
ŷ2

= 0
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Training iteration: calculate the gradient
From ŷ1 and ŷ2, continue to back-propagate to find δℓ

δU
(if a node

has multiple parents, such as exp, sum over all the incoming edges)
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ŷ1 = .423

ŷ2 = .577

δℓ
δŷ1

= −2.36

δℓ
δŷ2

= 0

δℓ
δU =

[
0 −.225
0 .225

]
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Training iteration: parameter update

For the parameter U , SGD performs the following update:

Ut=1 = Ut=0 − η
δℓ

δU

=

[
0 −.5
−.9 .3

]
− 10−2 ×

[
0 −.225
0 .225

]
=

[
0 −.502
−.9 .297

]
Similarly, we will update all the other model parameters E,W,b.

We will repeatedly perform training iterations until the stopping

criterion is met (e.g. after k iterations).
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Model Selection on the Dev Set

Our choice of hyper-parameters for the model architecture and

optimiser at the start were arbitrary.

Grid search defines ranges for each hyper-parameter, then trains

multiple models, one per config (from their Cartesian product).

E.g., if L = {2, 3} and η = {10−2, 10−3}, it will run [L = 2, η =

10−2], [L = 3, η = 10−2], [L = 2, η = 10−3], [L = 3, η = 10−3].

We then compare the performance of these models on the dev set,

and select the best one with parameters θ̂.
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Next Lectures

• Friday, next Tuesday: Distributional semantics - inducing

’meanings’ of word from context

• next Wed: Language modeling (classic approach)

• Friday: back to neural networks, we will be moving from text

classification into language modeling and text generation
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