
1/29

Foundations of Natural Language Processing
Lecture 9: Distributional Semantics

Mirella Lapata

School of Informatics

University of Edinburgh

mlap@inf.ed.ac.uk

Slides based on content from: Philipp Koehn, Alex Lascarides, Sharon Goldwater, Shay Cohen,

Khalil Sima’an, Ivan Titov, Hinrich Schuetze

2/29

Key Concept: Semantic Similarity

Two words are semantically similar if they have similar meanings.

astronaut ⇐⇒ cosmonaut gobble ⇐⇒ devour huge ⇐⇒ large

2/29

Key Concept: Semantic Similarity

Two words are semantically similar if they have similar meanings.

astronaut ⇐⇒ cosmonaut gobble ⇐⇒ devour huge ⇐⇒ large

How about “banana” and “apple”?

2/29

Key Concept: Semantic Similarity

Two words are semantically similar if they have similar meanings.

astronaut ⇐⇒ cosmonaut gobble ⇐⇒ devour huge ⇐⇒ large

How about “banana” and “apple”?

Are “car” and “flower” similar?

2/29

Key Concept: Semantic Similarity

Two words are semantically similar if they have similar meanings.

astronaut ⇐⇒ cosmonaut gobble ⇐⇒ devour huge ⇐⇒ large

How about “banana” and “apple”?

Are “car” and “flower” similar?

And what do you think about “car” and “pope”?

3/29

Why is semantic similarity interesting?

It’s a solvable problem (see below). Many other things we want to do with language are

more interesting, but much harder to solve.

We do not need annotated data.

There are many applications for semantic similarity.

Two examples of applications:

1. Direct use of measures of semantic similarity

2. Plagiarism detection

4/29

Application 1: Direct use of semantic similarity

Query expansion in information retrieval

User types in query [automobile]

Search engine expands with semantically similar word [car]

The search engine then uses the query [car OR automobile]

Better results for the user

5/29

Google: Internal model of semantic similarity

6/29

Application 2: Plagiarism Detection

7/29

The Distributional Hypothesis

How many of you know what tesgüino means?

7/29

The Distributional Hypothesis

How many of you know what tesgüino means?

a bottle of tesgüino is on the table

everybody likes tesgüino

tesgüino makes you drunk

we make tesgüino out of corn

7/29

The Distributional Hypothesis

How many of you know what tesgüino means?

a bottle of tesgüino is on the table

everybody likes tesgüino

tesgüino makes you drunk

we make tesgüino out of corn

Tesgüino is cold fermented

beverage made from corn

and popularly consumed in

the Mexican states of Jalisco,

Colima, Nayarit and Oaxaca.

7/29

The Distributional Hypothesis

How many of you know what tesgüino means?

a bottle of tesgüino is on the table

everybody likes tesgüino

tesgüino makes you drunk

we make tesgüino out of corn

Tesgüino is cold fermented

beverage made from corn

and popularly consumed in

the Mexican states of Jalisco,

Colima, Nayarit and Oaxaca.

Perhaps we can infer meaning just by looking at the contexts a word occurs in

Perhaps meaning IS the contexts a word occurs in (Wittgenstein!)

Either way, similar contexts imply similar meanings

This idea is known as the distributional hypothesis (Harris, 1954; Firth, 1857).

8/29

Distributional Semantics and Word Embeddings

Distributional semantics is an approach to semantics that is based on the contexts

of words in large corpora.

The basic notion formalized in distributional semantics is semantic similarity.

Word embeddings are the modern incarnation of distributional semantics– adapted

to work well with deep learning.

In this lecture, semantic similarity also includes semantic relatedness (e.g., “car” and

“motorway” are related but not similar).

9/29

Key concept: Cooccurrence count

Cooccurrence Count

Basis for precise definition of “semantic similarity”. The cooccurrence count of words w1

and w2 in a corpus is the number of times that w1 and w2 cooccur.

Different definitions of cooccurrence:

in a linguistic relationship with each other (e.g., w1 is a modifier of w2) or

in the same sentence or

in the same document or

within a distance of at most k words (where k is a parameter)

10/29

Word cooccurrence in Wikipedia: Examples

We define cooccurrence in this example as occurrence within k = 10 words of each other.

corpus = English Wikipedia

cooc.(rich,silver) = 186

cooc.(rich,society) = 143

cooc.(rich,disease) = 17

cooc.(poor,silver) = 34

cooc.(poor,society) = 228

cooc.(poor,disease) = 162

11/29

Cooccurrence counts → Count vectors

50 100 150 200 250

50

100

150

200

250

disease

society

silver

rich

poor

cooc.(rich,silver) = 186

cooc.(rich,society) = 143

cooc.(rich,disease) = 17

cooc.(poor,silver) = 34

cooc.(poor,society) = 228

cooc.(poor,disease) = 162

12/29

Cooccurrence counts → Vectors → Similarity

50 100 150 200 250

50

100

150

200

250

disease

society

gold
silver

rich

poor

Similarity between two words is the

cosine of the angle between them.

Small angle: silver and gold

are similar.

Medium-size angle: silver and

society are not very similar.

Large angle: silver and

disease are even less similar.

13/29

Dimensionality of vectors

Up to now we’ve only used two dimension words: rich and poor

Now do this for a very large number of dimension words: hundreds, thousands, or

even millions of dimension words.

This is now a very high-dimensional space with a large number of vectors

represented in it.

But formally, there is no difference to a two-dimensional space with four vectors.

Note: a word has dual role in the vector space

(1) each word is a dimension word, an axis of the space.

(2) but each word is also a vector in that space.

14/29

Measures of Similarity

The cosine of the angle between two vectors x and y is:

cos(x, y) =
x · y

||x|| · ||y||
=

∑n
i=1 xiyi

√

∑n
i=1 x2

i

√

∑n
i=1 y2

i

The Euclidean distance of two vectors x and y is:

||x − y|| =

√

√

√

√

n
∑

i=1

(xi − yi)2

Many more similarity measures exist.

15/29

Cooccurrence count (CC) matrix

w2

rich poor silver society disease

rich

poor

w1 silver

society

disease

15/29

Cooccurrence count (CC) matrix

w2

rich poor silver society disease

rich CC(w1,w2) CC(w1,w2) CC(w1,w2) CC(w1,w2) CC(w1,w2)

poor CC(w1,w2) CC(w1,w2) CC(w1,w2) CC(w1,w2) CC(w1,w2)

w1 silver CC(w1,w2) CC(w1,w2) CC(w1,w2) CC(w1,w2) CC(w1,w2)

society CC(w1,w2) CC(w1,w2) CC(w1,w2) CC(w1,w2) CC(w1,w2)

disease CC(w1,w2) CC(w1,w2) CC(w1,w2) CC(w1,w2) CC(w1,w2)

16/29

Cases where distributional semantics fails

Antonyms are judged to be similar: “disease” and “cure”.

Ambiguity: “Cambridge”

Non-specificity (occurs in a large variety of different contexts and has few/no specific

semantic associations): “person”

The corpus meaning is different from the meaning that comes to mind when the word

is encountered without context: “umbrella”.

Tokenization issues: “metal”

17/29

Pointwise Mutual Information

Pointwise Mutual Information (PMI): weighting of cooccurrence counts. We are replacing

the raw cooccurrence count with PMI, a measure of surprise.

PMI(w1,w2) = log
P(w1,w2)

P(w1)P(w2)

If w1,w2 independent: PMI(w1,w2) = 0

If w1,w2 perfectly correlated:

P(w1,w2) = P(w1) = P(w2), PMI(w1,w2) = log
P(w2)

P(w2)P(w2)
= log 1

P(w2)

If w1,w2 positively correlated: PMI(w1,w2) is large and positive.

If w1,w2 negatively correlated: PMI(w1,w2) is large and negative.

17/29

Pointwise Mutual Information

Pointwise Mutual Information (PMI): weighting of cooccurrence counts. We are replacing

the raw cooccurrence count with PMI, a measure of surprise.

PMI(w1,w2) = log
P(w1,w2)

P(w1)P(w2)

If w1,w2 independent: PMI(w1,w2) = 0

If w1,w2 perfectly correlated:

P(w1,w2) = P(w1) = P(w2), PMI(w1,w2) = log
P(w2)

P(w2)P(w2)
= log 1

P(w2)

If w1,w2 positively correlated: PMI(w1,w2) is large and positive.

If w1,w2 negatively correlated: PMI(w1,w2) is large and negative.

What does it mean to have a negative PMI?

17/29

Pointwise Mutual Information

Pointwise Mutual Information (PMI): weighting of cooccurrence counts. We are replacing

the raw cooccurrence count with PMI, a measure of surprise.

PMI(w1,w2) = log
P(w1,w2)

P(w1)P(w2)
PPMI(w1,w2) = max

(

log
P(w1,w2)

P(w1)P(w2)
, 0
)

If w1,w2 independent: PMI(w1,w2) = 0

If w1,w2 perfectly correlated:

P(w1,w2) = P(w1) = P(w2), PMI(w1,w2) = log
P(w2)

P(w2)P(w2)
= log 1

P(w2)

If w1,w2 positively correlated: PMI(w1,w2) is large and positive.

If w1,w2 negatively correlated: PMI(w1,w2) is large and negative.

What does it mean to have a negative PMI? Replace negative PMI values with zero.

18/29

Summary: Constructing Vector Spaces

Informal algorithm for constructing vector spaces:

Select a corpus

Select n target words which will be represented as vectors in the space;

Select k dimension words (they are found around target word in the context window)

compute k × n cooccurrence matrix

Compute (PPMI): weighted cooccurrence matrix

Compute similarity of any two focus words as the cosine of their vectors

19/29

Bag of words model

We do not consider the order of words in a context.

John is quicker than Mary and Mary is quicker than John give rise to same

cooccurrence counts.

This is called a bag of words model.

More sophisticated models: compute dimension features based on the parse of a

sentence – the feature “is object of the verb cook” would be recovered from both

“John cooked the ham” and “the ham was cooked”.

20/29

Embeddings

Definition

The embedding of a word w is a dense vector v⃗(w) ∈ Rk that represents semantic and

other properties of w. Typical values are 50 ≤ k ≤ 1, 000.

It appears there is little difference to count vectors: Both embeddings and count

vectors are representations of words, primarily semantic, but also capturing other

properties.

Embeddings have much lower dimensionality than count vectors.

Count vectors are sparse (most entries are 0), embeddings dense (almost never

happens that an entry is 0).

Embeddings are lower-dimensional (e.g., 100–300 dimensions).

21/29

Embedding Learning Algorithms

Singular Value Decomposition (SVD)

Also called Latent Semantic Indexing (LSI)

Factorization of cooccurrence matrix

Least squares objective optimized by power method

Word2Vec

A group of related models used to generate word embeddings

Word2Vect models are optimized by gradient descent

Skip-gram model predicts surrounding words (context) given a target word

21/29

Embedding Learning Algorithms

Singular Value Decomposition (SVD)

Also called Latent Semantic Indexing (LSI)

Factorization of cooccurrence matrix

Least squares objective optimized by power method

22/29

Linear Algebra: Recap

Dot product

x · y =
n

∑

i=1

xiyi

Example

x1

x2

x3

 ·

y1

y2

y3

 = x1y1+x2y2+x3y3

Matrix Multiplication

A · B = AB

m × n n × p m × p

Example

(

a1 b1

c2 d1

)

·

(

a2 b2

c2 d2

)

=

(

a1a2 + b1c2 a1b2 + b1d2

c1a2 + d1c2 c1b2 + d1d2

)

Length of vector

|d| =

√

√

√

√

n
∑

i=1

d2
i

Orthogonal Vectors

c and d are orthogonal iff
n

∑

i=1

ci · di = 0

23/29

Matrix Factorization: Embeddings

We will decompose the cooccurrence matrix into a product of matrices.

The particular decomposition we’ll use: singular value decomposition (SVD).

SVD: C = UΣVT (where C = cooccurrence matrix, with PPMI weighting)

We will then use the SVD to compute a new, improved cooccurrence matrix C′.

We’ll get better and more compact word representations out of C′ (compared to C).

24/29

SVD Visualization

U Σ VT

25/29

SVD Summary

We decompose the cooccurrence matrix C into a product of three matrices: UT

The input word matrix U – consists of one (row) vector for each word

The context word matrix VT – consists of one (column) vector for each context word

The singular value matrix Σ is a diagonal matrix with singular values, reflecting

importance of each dimension

We only keep first k dimensions and set the others to zero.

26/29

Property of SVD that we exploit here

Key property: each singular value tells us how important its dimension is.

By setting less important dimensions to zero, we keep the important information, but

get rid of the “details”.

These details may be noise – in that case, reduced SVD vectors are a better

representation because they are less noisy or make things dissimilar that should be

similar – again, reduced SVD vectors are a better representation because they

represent similarity better.

Analogy for “fewer details is better”: Image of a blue flower Image of a yellow flower,

Omitting color makes is easier to see the similarity

27/29

Example of C = UΣVT : All four matrices

SVD is decomposition of C into a representation of the input words, a representation of

the context and a representation of the importance of the “semantic” dimensions

C w1 w2 w3 w4 w5 w6

rich 1 0 1 0 0 0

poor 0 1 0 0 0 0

silver 1 1 0 0 0 0 =
society 1 0 0 1 1 0

disease 0 0 0 1 0 1

U 1 2 3 4 5

rich −0.44 −0.30 0.57 0.58 0.25

poor −0.13 −0.33 −0.59 0.00 0.73

silver −0.48 −0.51 −0.37 0.00 −0.61 ×
society −0.70 0.35 0.15 −0.58 0.16

disease −0.26 0.65 −0.41 0.58 −0.09

Σ 1 2 3 4 5

1 2.16 0.00 0.00 0.00 0.00

2 0.00 1.59 0.00 0.00 0.00

3 0.00 0.00 1.28 0.00 0.00 ×
4 0.00 0.00 0.00 1.00 0.00

5 0.00 0.00 0.00 0.00 0.39

VT w1 w2 w3 w4 w5 w6

1 0.75 −0.28 −0.20 −0.45 −0.33 −0.12

2 −0.29 −0.53 −0.19 0.63 0.22 0.41

3 0.28 −0.75 0.45 −0.20 0.12 −0.33

4 0.00 0.00 0.58 0.00 −0.58 0.58

5 −0.53 0.29 0.63 0.19 0.41 −0.22

28/29

Embeddings = Left Singular Vectors

U 1 2 3 4 5

rich −0.44 −0.30 0.00 0.00 0.00

poor −0.13 −0.33 0.00 0.00 0.00

silver −0.48 −0.51 0.00 0.00 0.00

society −0.70 0.35 0.00 0.00 0.00

disease −0.26 0.65 0.00 0.00 0.00

Σ 1 2 3 4 5

1 2.16 0.00 0.00 0.00 0.00

2 0.00 1.59 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00 0.00 ×
4 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.00

VT w1 w2 w3 w4 w5 w6

1 0.75 −0.28 −0.20 −0.45 −0.33 −0.12

2 −0.29 −0.53 −0.19 0.63 0.22 0.41

3 0.00 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.00 0.00

29/29

Summary

The meaning of a word is learned from its contexts in a large corpus.

The main analysis method of contexts is co-occurrence.

Distributional semantics is a good model of semantic similarity. There is a lot more in

semantics that distributional semantics is not a good model for.

Embeddings have lower-dimensionality than count vectors

Singular value decomposition is one method to obtain dense vector representations.

Next time: generating embeddings with Word2Vec.

