
1/31

Foundations of Natural Language Processing
Lecture 18: Transfer Learning I (BERT)

Mirella Lapata
School of Informatics

University of Edinburgh
mlap@inf.ed.ac.uk

2/31

Recap

We have learned about the Transformer model!

Attention is the key component (residual connections, feed-forward layers, position
embeddings, and layer normalization).

This lecture: how do you train Transformer models, what can you do with them?

3/31

What is Transfer Learning?

General Definition

Transfer learning is a machine learning technique where a model trained on one
task is re-purposed on a second related task.

Deep Learning Specific Definition

In transfer learning, we first train a base network on a base dataset and task, and
then we repurpose the learned features, or transfer them, to a second target network
to be trained on a target dataset and task. This process will tend to work if the
features are general, meaning suitable to both base and target tasks, instead of
specific to the base task.

4/31

VGG-16: A Typical Object Detection Model
(Simonyan and Zisserman, 2015)

4/31

VGG-16: A Typical Object Detection Model
(Simonyan and Zisserman, 2015)

5/31

Feature Extraction

A model like VGG-16 has a lot of layers (pretty dated!).

Current object detection models can have hundreds of layers.

They take forever to train and require very large training sets.

However, computer vision researchers found that you can take the output of the last
layer as a feature vector. (In this example, you would use fc7, and fc8 is just the
softmax.)

For a new task, use VGG-16 to turn an image into features, and then train a classifier
for a new task on these features.

Transfer learning by feature extraction!

5/31

Feature Extraction

A model like VGG-16 has a lot of layers (pretty dated!).

Current object detection models can have hundreds of layers.

They take forever to train and require very large training sets.

However, computer vision researchers found that you can take the output of the last
layer as a feature vector. (In this example, you would use fc7, and fc8 is just the
softmax.)

For a new task, use VGG-16 to turn an image into features, and then train a classifier
for a new task on these features.

Transfer learning by feature extraction!

6/31

Pre-training and Finetuning

Instead of just extracting features, we can retrain the model for a new task using new data:

Pre-training: train a generic source model (e.g., VGG-16) on a standard, large
dataset (e.g., ImageNet).
Finetuning: then take the resulting model, keep its parameters, and replace the
output layer to suit the new task. Now train this target model on the dataset for the
new task.

Transfer learning by finetuning.

You can think of pre-training as a way of initializing the parameters of your target model to
good values.

7/31

Pre-training and Finetuning

8/31

Pre-training and Finetuning in NLP: Remember word2vec?

9/31

Pre-training and Finetuning in NLP: Remember word2vec?

When we use word embeddings (e.g., skip-gram) as the input representations for a
new task, then we’re doing feature extraction.
Our source model is the neural language model that the embeddings come from.
The target model is often very different from the NLM, as our target task rarely is
next word prediction.
However, we can allow the weights of the embedding layer of the target model to be
trained.
This is a limited form of finetuning.

However, can we do full-scale finetuning for NLP? This became possible with
contextualized word embeddings.

9/31

Pre-training and Finetuning in NLP: Remember word2vec?

When we use word embeddings (e.g., skip-gram) as the input representations for a
new task, then we’re doing feature extraction.
Our source model is the neural language model that the embeddings come from.
The target model is often very different from the NLM, as our target task rarely is
next word prediction.
However, we can allow the weights of the embedding layer of the target model to be
trained.
This is a limited form of finetuning.

However, can we do full-scale finetuning for NLP? This became possible with
contextualized word embeddings.

10/31

Static Word Embeddings

(1) The new-look play area is due to be completed by early spring 2010.
(2) Congressional districts favor representatives who play to the party base.
(3) The freshman then completed the three-point play for a 66-63 lead.

Word2vec represents each word as a single vector, independent of its context .
Word2vec embeddings are used for feature extraction, i.e., to initialize the embedding
layer of a target model.
They are not designed to be used for finetuning.
They are often very efficient, so that training from scratch is possible.

11/31

Contextualized (or Dynamic) Word Embeddings

Often called pretrained language models or large language models.

Assign a vector to a word that depends on its context, i.e., on the preceding and
following words.

They can be finetuned: we re-train some of the weights of the embedding model for
the target task.

Contextualized embeddings take a lot of memory and compute to train from scratch.

But finetuning is an efficient way of using them.

BERT, GPT are typical examples. Pre-trained models available for many languages
and applications.

In this lecture: We introduce BERT as an example of contextualized word embeddings.

12/31

13/31

Transformer Recap

14/31

BERT Architecture

BERT (Bidirectional Encoder Representations from Transformers):

designed for pre-training deep bidirectional representations from unlabeled text;

conditions on left and right context in all layers;

pre-trained model can be finetuned with one additional output layer for many tasks
(e.g., NLI, QA, sentiment);

for many tasks, no modifications to BERT architecture are required;

Devlin et al. (2019) report SotA results on 11 tasks using pre-training/finetuning
approach.

15/31

BERT: A stack of transformer encoders

16/31

BERT: Input Representation

 !"#$! "#$!% &"'())#*+ ,-./01(23+ #% 456! ,-./0%&'()

*
 !"#$

.
 !

.
"#$!%

.
&"'(

.
))#*+

.
,-./0

.
1(

.
23+

.
#%

.
456!

.
,-./0

+,-.&

*/0.112&34

*
5

.
7

.
7

.
7

.
7

.
7

.
8

.
8

.
8

.
8

.
8

#.3/.&)

*/0.112&34

*
6

.
9

.
:

.
;

.
<

.
=>

.
=

.
?

.
@

.
A

.
B

7,42)2,&

*/0.112&34

Each token is the sum of three embeddings
Addition to transformer encoder: sentence embeddings

Figure from Devlin et al. (2019).

17/31

Bidirectional Transformers

18/31

BERT: Architecture

Multi-layer bidirectional transformer (Vaswani et al., 2023)

L layers H dimensionality A: number of
(transformer blocks) of hidden layer self-attention heads

BERT Base L = 12 H = 768 A = 12
BERT Large L = 24 H = 1024 A = 16

Input sequence: ⟨Question, Answer⟩ pair, single sentence, or any token sequence;
30,000 token vocabulary, represented as WordPiece embeddings (OOV words);
first token is [CLS]: aggregate sentence representation for classification tasks;
sentence pairs separated by [SEP] token; and by segment embeddings;
token position represented by position embeddings.

19/31

How is BERT pre-trained?

BERT provides embeddings for each token in its input.

The goal : after pre-training, the words should have “good” contextualized
embeddings for any task in the future.

BERT uses two surrogate tasks (and corresponding objectives) for pre-training:
(1) Masked language modeling
(2) Next sentence prediction

20/31

The masked language modeling objective

Predict the Masked word (a la CBOW).
[MASK] 15% of all input words are randomly
masked. if i-th token is chosen, replace with:
a) [MASK] 80% of the time;
b) itself 10% of the time (no change)
c) a random token 10% of the time

(corrupt it deliberately)

Can you think why this specific masking strategy
was adopted?

21/31

Next sentence prediction objective

Two sentences are fed in at a time.
Predict the if the second sentence
follows the first one or not.
Generate training data: chose two
sentences A and B, such that 50%
of the time B is the actual next
sentence of A, and 50% of the time
a randomly selected sentence.

What does this objective achieve?

22/31

Pre-training and Finetuning BERT

 !"# !"#

!
$%&'(!

)
*!

$'!+(,,, !
-

!
)
. ,,, !

/
.

% #
)

#
$'!+(,,, #

-
#
)
. ,,, #

/
.

$%&'(#01*) *$'!+(,,, #01*- #01*) ,,, #01/

23456708 +9:9;:9<=

'69:6>!8?*'<98

 !"# !"# !"#

!
$%&'(!

)
*!

$'!+(,,, !
-

!
)
. ,,, !

/
.

% #
)

#
$'!+(,,, #

-
#
)
. ,,, #

/
.

$%&'(#01*) *$'!+(,,, #01*- #01*) ,,, #01/

/9514?*'48648@4*A /9514?*'48648@4*

 !"# !"#

+:4B6:97878; C784B#3878;

-'+ /951*&/ /951*&/

D8E9F4E4?*'48648@4*A*98?* *+97:*

 !"#$

23456708*A85G4:*+97:

 !"#$%&' !"#$%&'%&'(%)*

Figure from Devlin et al. (2019).

23/31

Pre-training and Finetuning BERT

Training details

The model is trained on unlabeled data (self-supervised learning)
Data: Wikipedia (2.5B words) + BookCorpus (800M words)
Training Time: 1M steps (40 epochs), 4 TPU days
Optimizer: AdamW, 1e-4 learning rate, linear decay layer

input: designed to be two sentences:
1 sentence pairs in paraphrasing;
2 hypothesis-premise pairs in entailment;
3 question-passage pairs in question answering;
4 text-∅ pair in text classification or sequence tagging;

output (see appendix of Devlin et al. (2019) for examples):
1 sequence of tokens in tasks such as QA (mark answer span);
2 sequence of labels in tagging tasks such as NER;
3 [CLS] representation is fed into an output layer for classification.

24/31

Contextual Embeddings

Whereas word2vec had a single vector for each word type, contextual embeddings
provide a single vector for each instance of that word type in its sentential context.

25/31

The senses of the word “die”

26/31

BERT Results: Glue Benchmark

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average

392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -

Pre-OpenAI SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0

BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0

OpenAI GPT 82.1/81.4 70.3 87.4 91.3 45.4 80.0 82.3 56.0 75.1

BERTBASE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6

BERTLARGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

Glue is a mixture of various natural language understanding tasks.
MNLI, QNLI, WNLI: natural language inference QQP: question equivalence;
SST-2: sentiment CoLA: linguistic acceptability
STS-B: semantic similarity MRPC: paraphrasing
RTE: entailment.

27/31

Feature Extraction vs. Finetuning: Named Entity Recognition

System Dev F1 Test F1

ELMo (Peters et al., 2018a) 95.7 92.2
CVT (Clark et al., 2018) - 92.6
CSE (Akbik et al., 2018) - 93.1

Fine-tuning approach
BERTLARGE 96.6 92.8
BERTBASE 96.4 92.4

Feature-based approach (BERTBASE)
Embeddings 91.0 -
Second-to-Last Hidden 95.6 -
Last Hidden 94.9 -
Weighted Sum Last Four Hidden 95.9 -
Concat Last Four Hidden 96.1 -
Weighted Sum All 12 Layers 95.5 -

28/31

BERT and the State of the Art

The current state of the art in NLP owes a lot to BERT (and many subsequent large
language models):

pre-training a large language model and then fine-tuning or prompting is state of the
art for many NLP tasks
pre-training requires lots of resources! Estimate for BERT (Tim Dettmers): 4 GPUs
(RTX 2080Ti) for 68 days
fine-tuning existing model is relatively quick, but fitting model in GPU memory can be
a challenge
getting new state of the art results with ever-larger models and data is a game that
will continue, but only few can play
positive (for everybody else): we also need smart ideas for architectures, objective
functions, evaluation, etc.

29/31

Summary

BERT is a contextualized language model that uses a deep, bidirectional
transformer architecture;
it is pre-trained on unlabeled text using masking and next sentence prediction;
it is designed for finetuning with minimal architectural modifications;
the input uses sentence pairs; the output can be sentences, labels, classification
decisions, depending on task;
BERT-based models are state of the art on many NLP tasks.
There are many variants of BERT . . .

30/31

31/31

References

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for
language understanding. In J. Burstein, C. Doran, and T. Solorio, editors, Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2023).
Attention is all you need.

	BERT Architecture
	Masked Training
	Pre-training and Finetuning BERT

