Foundations of Natural Language Processing Lecture 19: Transfer Learning II

Mirella Lapata School of Informatics University of Edinburgh mlap@inf.ed.ac.uk

- **Last time:** we talked about BERT, a contextualized language model that uses a deep, bidirectional transformer architecture.
- BERT is *pre-trained* on unlabeld text using masking and next sentence prediction.
- It is designed designed for *finetuning* with minimal architectural modifications.
- The input uses sentence pairs; the output can be sentences, labels, classification decisions, depending on task.
- **Today**: we talk about T5 and GPT, two different transfer learning architectures.

- Pretraining BERT with masked language modeling (Encoder-only).
- Prediction of masked "love" token depends on all input tokens before and after "love".
- Each token along the vertical axis attends to all input tokens along the horizontal axis.

- Fine-tuning of BERT for sentiment analysis.
- encoder is a pretrained BERT: takes text sequence as input and feeds (global) "<cls>" representation into additional fully connected layer to predict the sentiment.

- Encoder converts sequence of input tokens into same number of output representations.
- Encoder-only model <u>cannot generate</u> a sequence of arbitrary length.
- Transformer architecture can be outfitted with a decoder that autoregressively predicts target sequence, token by token, conditional on both encoder output and decoder output.

- Encoder converts sequence of input tokens into same number of output representations.
- Encoder-only model <u>cannot generate</u> a sequence of arbitrary length.
- Transformer architecture can be outfitted with a decoder that autoregressively predicts target sequence, token by token, conditional on both encoder output and decoder output.
- So can we then pretrain an encoder-decoder architecture?

T5: Text-to-Text Transfer Transformer

Main claim: All text processing tasks can be represented in a common format that takes in text and produces text as output. All NLP is text to text!

- Encoder-decoder Transformer.
- Architecture follows "Attention Is All You Need" (Vaswani et al., 2017).
- Baseline size: two stacks of size BERT_{BASE}
- Encoder and decoder consist of 12 blocks.
- **Relative position** embeddings instead of a fixed embedding for each position.
- Relative position embeddings produce different learned embedding according to the offset between the "key" and "query" compared in the self-attention mechanism.
- Baseline T5 has about **220** million parameters (× 2 the parameters of BERT_{BASE}).

Denoising objective: also called "masked language modeling". Model is trained to predict missing (corrupted) tokens in the input.

- Randomly sample and drop out 15% of tokens in input.
- Replace consecutive spans by sentinel tokens.
- Mask consecutive spans and only predict dorpped-out tokens (computational cost).

A sentinel is a soldier or guard whose job is to stand and keep watch. Synonyms: guard, lookout, warden.

What is the learning objective for T5?

What is the learning objective for T5?

Why are sentinel tokens useful? Why can we not use BERT's [MASK]?

Pretraining T5

- **Common Crawl** is a publicly-available web archive that provides "web extracted text" by removing markup and other non-text content from the scraped HTML files.
- Use heuristics to clean it.
- Discard pages with fewer than 3 sentences, and lines with less than 5 words.
- Discard lines that do not end with punctuation mark.
- Remove obscene words, lines with word Javascript.
- Remove code lines, deduplicate.

The **Colossal Clean Crawled Corpus** (or C4 for short) contains 365M documents and 156B tokens.

So what are the tasks is T5 fine-tuned on?

GLUE and **SuperGLUE** comprise a collection of **text classification** tasks meant to test general language understanding abilities, and a few **generation tasks**:

- Sentence acceptability judgment
- Sentiment analysis
- Paraphrasing/sentence similarity
- Natural language inference
- Coreference resolution
- Sentence completion
- Word sense disambiguation
- SQuAD Question answering
- CNN/Daily Mail abstractive summarization
- English to German, French, and Romanian translation

Datasets are preprocessed to fit a unified text format.

CoLA		
Original: Processed:	John made Bill master of himself. cola sentence: John made Bill master of himself.	acceptable

STSB

Original:	Sentence 1: Representatives for Puretunes could not immedi-	
	ately be reached for comment Wednesday.	
	Sentence 2: Puretunes representatives could not be located	3.25
	Thursday to comment on the suit.	

Processed: stsb sentence1: Representatives for Puretunes could not im- "3.2" mediately be reached for comment Wednesday. sentence2: Puretunes representatives could not be located Thursday to comment on the suit.

Datasets are preprocessed to fit a unified text format.

Machine Translation						
Original:	Luigi often said to me that he never wanted the brothers to end up in court," she wrote.					
Processed:	translate English to German: "Luigi often said to me that he never					
	wanted the brothers to end up in court," she wrote.					
Original:	"Luigi sagte oft zu mir, dass er nie wollte, dass die Brüder vor					
	Gericht landen", schrieb sie.					
Processed:	"Luigi sagte oft zu mir, dass er nie wollte, dass die Brüder vor					
	Gericht landen", schrieb sie.					

Datasets are preprocessed to fit a **unified text format**.

QNLI		
Original:	Question: Where did Jebe die? Sentence: Genghis Khan recalled Subutai back to Mongolia soon afterwards, and Jebe died on the road back to Samarkand.	1
Processed:	qnli question: Where did Jebe die? sentence: Genghis Khan recalled Subutai back to Mongolia soon afterwards, and Jebe died on the road back to Samarkand.	entailment

Finetuning T5

Name	<i>d</i> _{model}	d_{ff}	d_{kv}	Attention	Encoder	Decoder	Size
				Heads	Layers	Layers	
Small	512	2,048	64	8	6	6	60M
Base	768	3,072	64	12	12	12	220M
Large	1,024	4,096	64	16	24	24	770M
3B	1,024	16,384	128	32	24	24	2.8B
11B	1,024	65,536	128	128	24	24	11B

Model	GLUE	SST-2	MRPC	STS-B	MNLI-m	MNLI-mm	SQuAD	SuperGLUE	BoolQ
	Avg	Acc	F1	ρ	Acc	Acc	F1	Acc	Avg
Previous best	89.4	97.1	93.6	92.3	91.3	91.0	95.5	84.6	87.1
T5-Small	77.4	91.8	89.7	85.0	82.4	82.3	87.24	63.3	76.4
T5-Base	82.7	95.2	90.7	88.6	87.1	86.2	92.08	76.2	81.4
T5-Large	86.4	96.3	92.4	89.2	89.9	89.6	93.79	82.3	85.4
T5-3B	88.5	97.4	92.5	89.8	91.4	91.2	94.95	86.4	89.9
T5-11B	90.3	97.5	92.8	92.8	92.2	91.9	96.22	88.9	91.2

Better than previous best results across the board.

Larger models perform better.

Model architectures and pretraining objectives

MLM: Masked Language Model, CLM: Causal Language Model

Improving Language Understanding by Generative Pre-Training

GPT (2018) 117 million parameters

Alec Radford

Karthik Narasimhan

Tim Salimans

Ilya Sutskever

Language Models are Unsupervised Multitask Learners

GPT-2 (2019) **1.5 billion** parameters

Alec Radford *1 Jeffrey Wu *1 Rewon Child 1 David Luan 1 Dario Amodei **1 Ilya Sutskever **1

Language Models are Few-Shot Learners

GPT-3 (2020) **175 billion** parameters NeurIPS 2020 best paper

Tom B. Brown*

Benjamin Mann*

- Autoregressive model that predicts next token given tokens so far (either predicted or given as part of input).
- As it processes each subword, it masks the "future" words and conditions on (i.e., attends to) previous words.
- Consists only of decoder transformer blocks (contrast with BERT which consists only of encoders).
- There is no encoder-decoder cross-attention.

The first GPT model (sometimes called GPT-1)

Pretrained on the BooksCorpus (7,000 unique unpublished books); also shows results on fine-tuning for end tasks, where inputs and outputs are converted to text.

- Layer norm moved to the input of each sub-block
- Vocabulary extended to 50,257 tokens and context size increased from 512 to 1,024
- Trained on 8 million docs from the web (Common Crawl), minus Wikipedia
- Play with it here: https://huggingface.co/gpt2
- You can visualize attention heads here: https://huggingface.co/spaces/exbert-project/exbert

Image from http://jalammar.github.io/illustrated-gpt2/

- Pretraining architectures: BERT, T5, GPT
- Encoder-only, Encoder-Decoder, Decoder-only architectures
- General trend: as model grow *bigger* their *performance improves*.
- General trend: most NLP tasks can be *reformatted as generation tasks*.
- **Next time:** GPT-3, prompting, and in-context learning.