
1/30

Foundations of Natural Language Processing
Lecture 21: Scaling Laws and Instruction Tuning

Mirella Lapata
School of Informatics

University of Edinburgh
mlap@inf.ed.ac.uk



2/30

Recap

GPT-3 has arrived! Ginormous LLM.

In-context learning allows us to perform inference with LLMs without fine-tuning.
Accuracy is highly sensitive to prompt design.

Conclusion so far: bigger is better .

Today: how does pretraining a model like GPT-3 actually work? And are we really
done with fine-tuning?



3/30

Where are we?



4/30

Where are we?



5/30

Models for language have become bigger

Bigger models mean that training and deployment is expensive!



5/30

Models for language have become bigger

Bigger models mean that training and deployment is expensive!



6/30

What does scaling mean?

Scaling is not just about models with more parameters

Scaling is about using more compute:

(1) More compute for model forward and backward passes
(2) More compute for training iterations also

But also about model capacity : only a large enough model can take advantage of the
additional training



7/30

Larger models present new problems

We cannot find the best hyperparameters by training multiple models.

We don’t know when to stop training!

Given a budget for compute, should we increase the model size or the number of
training steps using that budget

Can we develop a theory that connects loss with the model sizes and the number of
training steps?



8/30

How big should your model be?

Petaflop-s-days measure

Is a measure of computational capacity used to quantify the processing power
over time, combining performance (measured in petaflops) and the duration (mea-
sured in days). One petaflop is equal to 1015 floating-point operations per second.

Imagine a supercomputer that has a processing speed of 1 petaflop:

If this computer runs continuously for 24 hours (1 day), it will perform:
1 petaflop × 86,400 seconds (in a day) = 8.64 × 1019 operations in one day

If a faster 10-petaflop supercomputer runs for 5 days, it will achieve:
10 petaflops × 5 days = 50 petaflop-s-days.

Training a large language model might require 10,000 petaflop-s-days, meaning it
needs to run on a supercomputer with 100 petaflops for 100 days.



9/30

How big should your model be?

Smaller models don’t have enough
capacity to use the extra compute!
they plateau early.

Larger models take longer initially
but with more compute get to lower
losses.



9/30

How big should your model be?

Smaller models don’t have enough
capacity to use the extra compute!
they plateau early.

Larger models take longer initially
but with more compute get to lower
losses.



9/30

How big should your model be?

Smaller models don’t have enough
capacity to use the extra compute!
they plateau early.

Larger models take longer initially
but with more compute get to lower
losses.



10/30

How big should your model be?

For a given compute budget, what is the optimal model size?

Rather than training models to convergence, train them to optimality.

But to make this choice, we need to know all these learning curves.

How can we get them without training a model?
Or when the budget only allows training one LARGE model?

The claim

Test loss is a power law function of model size and compute. If this is true, then
use small models to fit the constants of the power law function, and then extrapolate
to large sizes.



11/30

Scaling laws according to Kaplan et al.

Language modeling performance improves smoothly as we increase the model size,
dataset size, and amount of compute used for training.

L(N) =

(
Nc

N

)αN

L(D) =

(
Dc

D

)αD

L(C) =

(
Cc

C

)αC

N: number of model parameters (no token embeddings, positional embeddings), D:
dataset size, C: compute budget
NC , αN , Dc , Cc , αN , αD, αC , depend on exact transformer architecture.

Empirical performance has a power-law relationship with each individual factor when
the other two properties are held constant.



11/30

Scaling laws according to Kaplan et al.

Language modeling performance improves smoothly as we increase the model size,
dataset size, and amount of compute used for training.

L(N) =

(
Nc

N

)αN

L(D) =

(
Dc

D

)αD

L(C) =

(
Cc

C

)αC

N: number of model parameters (no token embeddings, positional embeddings), D:
dataset size, C: compute budget

NC , αN , Dc , Cc , αN , αD, αC , depend on exact transformer architecture.

Empirical performance has a power-law relationship with each individual factor when
the other two properties are held constant.



11/30

Scaling laws according to Kaplan et al.

Language modeling performance improves smoothly as we increase the model size,
dataset size, and amount of compute used for training.

L(N) =

(
Nc

N

)αN

L(D) =

(
Dc

D

)αD

L(C) =

(
Cc

C

)αC

N: number of model parameters (no token embeddings, positional embeddings), D:
dataset size, C: compute budget
NC , αN , Dc , Cc , αN , αD, αC , depend on exact transformer architecture.

Empirical performance has a power-law relationship with each individual factor when
the other two properties are held constant.



12/30

Scaling laws according to Kaplan et al.

LLMs pretrained up to 1.5B parameters over subsets of WebText2 corpus (22M to 23B
tokens), fixed context length of 1,024 tokens and next-token prediction loss.



13/30

Working out the parameters of GPT-style Transformer

The number of (non-embedding) parameters N can be roughly computed as follows:

N ≈ 2 d nlayer(2 dattn + dff)

≈12 nlayer d2

(assuming dattn = dff/4 = d)

We are ignoring biases, d is the input and output dimensionality of the model

dattn as the self-attention layer size, d ff the size of the feedforward layer

GPT-3: n = 96 layers, d = 12288.

It has 12 × 96 × 122882 ≈ 175 billion parameters.



14/30

Empirical Observations

For given amount of compute
C, best loss we can obtain is:

L ∝ C−0.048

For given amount of compute
C, optimal model size is:

Nopt ∝ C0.73

For given amount of compute
C, optimal number of tokens:

Dopt ∝ C0.27



15/30

Empirical Observations

For given amount of compute
C, best loss we can obtain is:

L ∝ C−0.048

For given amount of compute
C, optimal model size is:

Nopt ∝ C0.73

For given amount of compute
C, optimal number of tokens:

Dopt ∝ C0.27

Suppose we have access to 100x more
compute. What should we do, increase
the model size or the number of tokens?

new Nopt ∝ (100C)0.73

new Dopt ∝ (100C)0.27

new Nopt

old Nopt
=

(100C)0.73

C0.73 = 1000.73 ≈ 28.8

new Dopt

old Dopt
=

(100C)0.27

C0.27 = 1000.27 ≈ 3.47

Increase number of training steps by 29x
and number of tokens by 3.5x. We esti-
mate these without training the model!



15/30

Empirical Observations

For given amount of compute
C, best loss we can obtain is:

L ∝ C−0.048

For given amount of compute
C, optimal model size is:

Nopt ∝ C0.73

For given amount of compute
C, optimal number of tokens:

Dopt ∝ C0.27

Suppose we have access to 100x more
compute. What should we do, increase
the model size or the number of tokens?

new Nopt ∝ (100C)0.73

new Dopt ∝ (100C)0.27

new Nopt

old Nopt
=

(100C)0.73

C0.73 = 1000.73 ≈ 28.8

new Dopt

old Dopt
=

(100C)0.27

C0.27 = 1000.27 ≈ 3.47

Increase number of training steps by 29x
and number of tokens by 3.5x. We esti-
mate these without training the model!



15/30

Empirical Observations

For given amount of compute
C, best loss we can obtain is:

L ∝ C−0.048

For given amount of compute
C, optimal model size is:

Nopt ∝ C0.73

For given amount of compute
C, optimal number of tokens:

Dopt ∝ C0.27

Suppose we have access to 100x more
compute. What should we do, increase
the model size or the number of tokens?

new Nopt ∝ (100C)0.73

new Dopt ∝ (100C)0.27

new Nopt

old Nopt
=

(100C)0.73

C0.73 = 1000.73 ≈ 28.8

new Dopt

old Dopt
=

(100C)0.27

C0.27 = 1000.27 ≈ 3.47

Increase number of training steps by 29x
and number of tokens by 3.5x. We esti-
mate these without training the model!



15/30

Empirical Observations

For given amount of compute
C, best loss we can obtain is:

L ∝ C−0.048

For given amount of compute
C, optimal model size is:

Nopt ∝ C0.73

For given amount of compute
C, optimal number of tokens:

Dopt ∝ C0.27

Suppose we have access to 100x more
compute. What should we do, increase
the model size or the number of tokens?

new Nopt ∝ (100C)0.73

new Dopt ∝ (100C)0.27

new Nopt

old Nopt
=

(100C)0.73

C0.73 = 1000.73 ≈ 28.8

new Dopt

old Dopt
=

(100C)0.27

C0.27 = 1000.27 ≈ 3.47

Increase number of training steps by 29x
and number of tokens by 3.5x. We esti-
mate these without training the model!



16/30

Interim Summary

Scaling laws are empirical observations that relate model size, compute in FLOPs,
training size and loss functions.

Typically power law relationships.

These are empirical observations. There is very little theoretical understanding.

Nevertheless, very useful to train large models without trial and error.



17/30

Model architectures and pretraining objectives



18/30

Is language modeling the same as following instructions?

Serendipity means the occurrence
and development of events by
chance in a happy or beneficial way.
Use the word in a sentence

GPT-3 175B

Serendipity is the ability to see something
good in something bad. Use the word in a
sentence.

Serendipity means to be happy with what
you have. Use the word in a sentence.

Serendipity means finding something good
in something that is bad. Use the word in a
sentence.

What is a reasonable answer to this prompt?
Running into Margaret and being introduced to Tom was a fortunate stroke of serendipity.



18/30

Is language modeling the same as following instructions?

Serendipity means the occurrence
and development of events by
chance in a happy or beneficial way.
Use the word in a sentence

GPT-3 175B

Serendipity is the ability to see something
good in something bad. Use the word in a
sentence.

Serendipity means to be happy with what
you have. Use the word in a sentence.

Serendipity means finding something good
in something that is bad. Use the word in a
sentence.

What is a reasonable answer to this prompt?

Running into Margaret and being introduced to Tom was a fortunate stroke of serendipity.



18/30

Is language modeling the same as following instructions?

Serendipity means the occurrence
and development of events by
chance in a happy or beneficial way.
Use the word in a sentence

GPT-3 175B

Serendipity is the ability to see something
good in something bad. Use the word in a
sentence.

Serendipity means to be happy with what
you have. Use the word in a sentence.

Serendipity means finding something good
in something that is bad. Use the word in a
sentence.

What is a reasonable answer to this prompt?
Running into Margaret and being introduced to Tom was a fortunate stroke of serendipity.



19/30

What we’ve seen so far

(A) Pretrain-finetune (BERT, T5)

Pretrained
LM

Finetune on
task A

Inference
on task A

Typically requires many task-specific examples.
One specialized model for each task.

(B) Prompting (GPT3)

Pretrained
LM

Inference
on task A

General-purpose model.
Specialize via few-shot prompting or prompt engineering.



20/30

Instruction Tuning

(C) Instruction tuning

Pretrained
LM

Instruction-tune
on many tasks:
B, C, D,

Inference
on task A

Model learns many tasks via natural language instructions.
Inference on unseen tasks!



21/30

Do you remember T5?

For each task, design a template so that the inputs and outputs are text.



22/30

Instruction finetuning

Inputs and outputs are both text. The output is not a completion of the input text (as with
the language modeling objective), but the response to it.



23/30

Instruction finetuning



24/30

Natural Instructions

Humans can solve different
tasks, by simply reading
instructions and looking at a
few examples.

NATURAL INSTRUCTIONS has
61 distinct tasks, their
instructions, and 193k task
instances (input-output pairs).

Using meta-dataset, we can
train models on seen tasks
and measure generalization
on unseen ones.

Explore instructions https://instructions.apps.allenai.org/.

https://instructions.apps.allenai.org/


25/30

Super-Natural Instructions

SUPER-NATURALINSTRUCTIONS

dataset contains over 1.6K tasks,
3M+ examples

Classification, sequence tagging,
rewriting, translation, QA

Many languages: 576 non-English

Wang 2022. Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks



26/30

Super-Natural Instructions Example



27/30

Super-Natural Instructions Results

Models that leverage instructions show stronger generalization to unseen tasks.



28/30

Scaling Instruction-tuning

Linear growth of model performance
with exponential increase in observed
tasks and model size

Linear growth of model performance
with exponential increase in observed
tasks and model size

Linear growth of model performance
with exponential increase in observed
tasks and model size

Number of examples has
little effect
Number of examples has
little effect



28/30

Scaling Instruction-tuning

Linear growth of model performance
with exponential increase in observed
tasks and model size

Linear growth of model performance
with exponential increase in observed
tasks and model size

Linear growth of model performance
with exponential increase in observed
tasks and model size

Number of examples has
little effect
Number of examples has
little effect



28/30

Scaling Instruction-tuning

Linear growth of model performance
with exponential increase in observed
tasks and model size

Linear growth of model performance
with exponential increase in observed
tasks and model size

Linear growth of model performance
with exponential increase in observed
tasks and model size

Number of examples has
little effect
Number of examples has
little effect



29/30

Training Large Language Models

What just happened?

Finetuning is back!

We are fine-tuning on
instructions rather creating
different copies of the same
model for different tasks.



30/30

Summary

Pre-trained LLMs actually fail to properly follow the prompts.

A simple strategy to address this instruction tuning.

The LLM is trained on a small dataset of examples that consists of prompts or
instructions followed by the correct actions.

By fine-tuning on these examples (usually very few per task), the model learns to
better understand and follow instructions in natural language.

An instruction-tuned LLM will often be able to generalize and follow instructions on a
much wider variety of tasks.

Still not a great solution for open-ended tasks (e.g., “Write me a story about a dog
and her pet grasshopper.”).

Next time: Reinforcement learning from human feedback.


