Formal Verification 2023-24: Practical Exercise 2

SAT & SMT with the Z3 solver

1 Getting Started

The 73 Wiki is the main place to start for information on Z3. For this exercise, you provide
input to Z3 in the SMT-LIB format. A Z3 Tutorial guides you through the SMT-LIB
commands that Z3 accepts, and allows you to try running them in your browser. To run
you own examples in your browser, go to the Z3 Playground.

For Coursework 2, you will be asked to use a Python interface to Z3. The Z3 Wiki links
to instructions on how to install Z3 and this interface. Depending on how you install this
interface, Z3 also becomes available to run from the command line. For this exercise, you
just need to run Z3 from the command line, if you are not running it in your browser.

On DICE Linux machines, you can use the following instructions to install Z3 and its
Python interface in your DICE account file space.

1. Open a shell window and cd to your home directory.

2. Create a new Python virtual environment in directory z3pyenv by running the com-
mand

python3 -m venv z3pyenv

This directory will hold the Z3 binary and Python interface code.
3. To activate the virtual environment, enter

source z3pyenv/bin/activate

Your command line prompt will now have a (z3pyenv) prefix to indicate the environ-
ment is activated.

4. To install Z3 into this environment, enter
pip install z3-solver

5. m The Z3 solver will be available as a command. For example,

e z3 -h shows you command line options,
e z3 x.smt2 runs Z3 on file x.smt2,

e z3 -in starts Z3 in interactive mode. When you then want to exists interactive
mode and go back to the shell, enter the command (exit) or just type a control-d.

6. To deactivate the Z3 installation in a shell, enter the command deactivate.

7. You only have to install Z3 once. Subsequently, to activate Z3 again in any shell, just
use again

source z3pyenv/bin/activate


https://github.com/Z3Prover/z3/wiki
https://smtlib.cs.uiowa.edu/
https://microsoft.github.io/z3guide/docs/logic/intro
https://microsoft.github.io/z3guide/playground/Freeform%20Editing
https://docs.python.org/3/library/venv.html

2 A constraint satisfaction puzzle

Consider 3 persons A, B and C who need to be seated in a row but
1. A does not want to sit next to C,
2. A does not want to sit in the left chair,

3. B does not want to sit to the right of C.

2.1 Solving the puzzle using SAT

Create a file puzzlel.smt2 in which you set up the puzzle and its constraints as a propo-
sitional satisfiability problem. See the start of the Propositional Logic section of the Z3
Tutorial for the needed SMT-LIB statements.

Be sure to add a (check-sat) statement at the end, after setting up the puzzle. When
you run Z3 on the file, you should find that it returns unsat to indicate that the problem is
unsatisfiable. Remove constraint 3 and now observe Z3 returns sat to indicate the problem
is satisfiable. Add a (get-model) statement after the (check-sat) statement to get Z3 to
report the satisfying assignment it finds.

There are various ways you could encode the puzzle. For example, you may introduce 9
boolean constants, one for each of the three persons sitting in each of the three seats. Other
encodings using fewer constants are possible.

2.2 Solving the puzzle using SMT

Create a file puzzle2.smt2 in which you set up the puzzle and its constraints as an integer
arithmetic satisfiability problem. See the Theories > Arithmetic section of the Z3 Tutorial
for suitable statements.

For example, you might introduce 3 integer constants, each indicating the seat number
of one of the persons.

Paul Jackson, 27th October 2023


https://microsoft.github.io/z3guide/docs/logic/propositional-logic
https://microsoft.github.io/z3guide/docs/theories/Arithmetic

	Getting Started
	A constraint satisfaction puzzle
	Solving the puzzle using SAT
	Solving the puzzle using SMT


