Verification with SPARK
Paul Jackson
Paul. Jackson@ed.ac.uk

University of Edinburgh

Formal Verification
Autumn 2023



Using assertions to specify program properties

» An assertion is a logical formula that is associated with a
point in the control-flow of a program.
It describes a property of the program state that is desired
true at that point.

P Assertions usually expressed in the language of Boolean
expressions provided by the programming language, sometimes
extended with ¥V and 3 quantifiers.

> FV approaches try to logically establish that assertions hold
for all possible execution paths leading to them.

2/33



Assertion pragmas

if X > Y then

Max := X;
else

Max :=Y;
end if;

pragma Assert (Max >= X and Max >= Y
and (Max = X or Max = Y)
)

3/33



Freedom from runtime exceptions
Common causes of runtime exceptions include
» arithmetic overflow
» divide by zero

» array index out of bounds
» subrange/subtype constraint violation

subtype T1 is Integer range 1 .. 10;

Vv : T1 :=10; -- 0K
begin
V:i=1+V-1; - 0K
V:i=1+V; —-— EXCEPTION POSSIBLY THROWN

Assertions automatically inserted to check these never occur

Formal analysis simplified by not having to consider exception
scenarios

4/33



Runtime errors example

Consider
AT+ J) =P/ Q;

What runtime errors might occur?

Answer:

> I+J might overflow the base-type of the types of I and J
I+J might be outside the array index subtype

>
» P/Q might overflow the base-type of the types of P and Q
> P/Q might be outside the array element subtype

>

Q might be zero

5/33



Preconditions

A precondition is an assertion attached to the start of a
subprogram (a function or a procedure).

procedure Increment (X: in out Integer)
with Pre => (X < Integer’Last)

is

begin
X =X+ 1;

end Increment;

» FV assumes subprogram preconditions hold when checking

assertions within the subprogram

» FV checks preconditions hold at each subprogram invocation

6/33



Postconditions

A postcondition is an assertion attached to control-flow points of a
subprogram where control flow exits the subprogram

function Total_Above_Threshold (Threshold : in Integer)
return Boolean

with
Post => Total_Above_Threshold’Result = Total > Threshold;

procedure Add_To_Total (Incr : in Integer) with
Post => Total = Total’0ld + Incr;

» When analysing a subprogram, FV checks all postconditions
hold

P> At each control flow point for the return of a call to a
subprogram, FV assumes any subprogram postconditions hold

7/33



Combining preconditions and postconditions

procedure Increment (X: in out Integer)
with Pre => (X < Integer’Last)
Post => X = X’01d + 1;

procedure Sqrt (Input : in Integer; Res: out Integer)
with
Pre => Input >= 0,
Post => (Res * Res) <= Input and
(Res + 1) * (Res + 1) > Input;

8/33



Design by contract

Preconditions and postconditions

» form a contract between subprogram users and the
subprogram implementers.

» if rich enough, provide full documentation to users — insulate
them from implementation details

» promote modular design

> Extend the abstract data type (ADT) paradigm that inspired

OO programming and the separation of package specifications
and bodies in Ada.

» promote modular verification.

Hence enable scaling of FV.

9/33



Contract use example

procedure Add2 (X : in out Integer)
with Pre => (X <= Integer’Last - 2)
is
begin
Increment (X);
Increment (X);
end Add2;

Will pre-conditions of both Increment calls be verified?

Answer. yes if Increment contract is specified with a
post-condition.

10/33



SPARK flow analysis
Considers two issues:

P Interaction between subprograms and global state — what
global state is read from and written to.
» Dependence of outputs of subprograms on inputs

» Inputs and outputs include both parameters and global
variables

SPARK notation allows desired flows to be specified

Tools then check flow specifications met

» Specification properties might related to code security

» Checks identify uninitialised variables, unused variables,
ineffective code.

Formal assertion checking relies on flow analysis in various ways
(e.g. checking persistence of asserted properties from one place to
another)

11/33



Global flow contract examples

procedure Set_X_To_Y_Plus_Z with
Global => (Input => (Y, Z), -- reads values of Y and Z
Output => X); -- modifies value of X

procedure Set_X_To_X_Plus_Y with
Global => (Input => Y, -- reads value of Y
In_Out => X); -- modifies value of X
-— also reads its initial value

Sometimes known as data flow or just data dependencies in
SPARK documentation.

12/33



Intra-subprogram flow contract examples

procedure Swap (X, Y : in out T) with
Depends => (X => Y, -- X depends on initial value of Y
Y => X); -- Y depends on initial value of X

procedure Set_X_To_Y_Plus_Z with
Depends => (X => (Y, 2Z)); -- X depends on Y and Z

Sometimes known as information flow or just flow dependencies in
SPARK documentation.

13/33



Statically checking an assertion

Involves considering all execution paths leading to it.

Branches and joins in execution paths due to conditionals are no
problem.

if X > Y then

Max := X;
else

Max :=Y;
end if;

pragma Assert (Max >= X and Max >= Y);

Loops are an issue

14/33



Execution paths involving loops

Full set of execution paths through a loop

» might not be fixed size — could be data dependent

» could be very large

subtype Natural is Integer range O .. Integer’Last;

procedure Increment_Loop (X : in out Integer;
N : in Natural) with

Pre => X <= Integer’Last - N,
Post => X = X’01d + N
is
begin
for T in 1 .. N loop
X =X+ 1;
end loop;

end Increment_Loop;

15/33



Breaking loops with assertions
A Loop invariant is an assertion inserted into a loop to split
execution paths into well-defined segments.

procedure Inc_Loop_Inv (X : in out Integer; N : Natural) with
Pre => X <= Integer’lLast - N,
Post => X = X’01d + N

is
begin
for T in 1 .. N loop
X =X+ 1;
pragma Loop_Invariant (X = X’Loop_Entry + I);
end loop;

end Inc_Loop_Inv;

Segments are:

» Pre — Loop_Invariant
» Loop_Invariant— Loop_Invariant
» Loop_Invariant— Post

» Pre — Post forwhen N =0
16/33



Euclidean linear division

procedure Linear Div (I : in Integer; J : in Integer;
Q : out Integer; R : out Integer;)
with
Pre =>I > 0and J >0
Post => Q > 0 and R > 0 and R< Jand J *x Q +R =1

is

begin
Q :=0;
R :=1I;

while R >= J loop
pragma Loop_Invariant
(R>0and Q> 0and J*xQ+R=1);
Q:=Q+1;
R :=R - J;
end loop;
end Linear_Div;

17/33



Looping through an array

subtype Index_T is Positive range 1 .. 1000;
subtype Component_T is Natural;
type Arr_T is array (Index_T) of Component_T;

procedure Validate_Arr_Zero (A : Arr_T; Success : out Boolean)
with
Post => Success = (for all J in A’Range => A(J) = 0)
is
begin
for J in A’Range loop
if A(J) /= 0 then

Success := False;
return;
end if;
pragma Loop_Invariant 777;
end loop;
Success := True;

end Validate_Arr_Zero;
18/33



Looping through an array, with a loop invariant

subtype Index_T is Positive range 1 .. 1000;
subtype Component_T is Natural;
type Arr_T is array (Index_T) of Component_T;

procedure Validate_Arr_Zero (A : Arr_T; Success : out Boolean)
with
Post => Success = (for all J in A’Range => A(J) = 0)
is
begin
for J in A’Range loop
if A(J) /= 0 then
Success := False;
return;
end if;
pragma Loop_Invariant
(for all K in A’First .. J => A(K) = 0);
end loop;

Success := True;
end Validate_Arr_Zero; 19/33



Discovery & inference of loop invariants

» Reasoning with loop invariants is very much like induction on
naturals
P(0) V¥n:N.P(n)= P(n+1)
Vn : N. P(n)
» Checking loop invariant holds on first iteration like base case

of induction
» Checking loop invariant holds on later iteration, given it holds
on immediately previous one like step case of induction

» Loop invariants often discovered by generalising
post-condition, just as proof by induction involves first
generalising the statement to be proven.

» Automatic discovery of loop invariants is an active research
field

» Some cases are easy
» GNATprove tool does infer bounds on for-loop indexes.

20/33



Showing loops terminate
Let > be the set of possible program states,
(W, <) be a well-founded order.
To show a loop terminates:

1. define a function v : X — W

2. show
v(s') < v(s)

whenever s is the state at some point in the loop and s’ is the

state at the same point one iteration on.

Function v is called a variant function.

In SPARK
> W is most typically some bounded arithmetic type, e.g.

Integer.
> < is conventional order or converse
» Also can have W containing tuples of arithmetic values,

lexicographically ordered 21 /33



Loop termination example

subtype Index is Positive range 1 .. 1_000_000;
type Text is array (Index range <>) of Integer;

function LCP (A : Text; X, Y : Integer) return Natural with
Pre => X in A’Range and then Y in A’Range,

is

L : Natural,;
begin

L := 0;

while X + L <= A’Last
and then Y + L <= A’Last
and then A (X + L) = A (Y + L)
loop
pragma Loop_Variant (Increases => L);
L:=L+1;
end loop;

return L;
end LCP;

22/33



Ghost code

Ghost code is extra code added to SPARK programs that is only
used for specification purposes.

Never affects normal function of programs

> SPARK language provides syntax identifying ghost code.
SPARK tools check that normal code never uses ghost code

Does impact performance when run-time assertion checking
enabled

23/33



Ghost variables

Using a ghost variable to capture the initial value of a parameter.

procedure Do_Something (X : in out T) is
X_Init : constant T := X with Ghost;
begin
Do_Some_Complex_Stuff (X);
pragma Assert (Is_Correct (X_Imit, X));
-- It is OK to use X_Init inside an assertion.

X := X_Init;

-- Compilation error:
- Ghost entity cannot appear in this context

24/33



Ghost functions and procedures
Uses include

P Factoring out common expressions in contracts
» Abstracting state

type Queue is private;

function Get_Model (S : Queue) return Nat_Array with Ghost;
-— Returns an array as a model of a queue

procedure Push_Front (S : in out Queue; E : in Natural) with
Pre => Get_Model (S)’Length < Max,
Post => Get_Model (S) = E & Get_Model (S)°’01d;

procedure Pop_Back (S : in out Queue; E : out Natural) with

Pre => Get_Model (S)’Length > O,
Post => Get_Model (S) & E = Get_Model (S)’01d;

25/33



Verification case study 1

Verification of Selection sort

» Shows where SPARK verification starts needing major user
guidance

package Sort with SPARK_Mode is

-- Sorts the elements in the array Values in ascending order
procedure Selection_Sort (Values : in out Nat_Array)

with

Post => Is_Perm (Values’01d, Values) and then
(if Values’Length > O then
(for all I in Values’First .. Values’Last - 1 =>
Values (I) <= Values (I + 1)));
end Sort;

26/33



Verification case study 2
Definition of Is_Perm function

package Perm with SPARK_Mode, Ghost is
subtype Nb_Occ is Integer range O .. 100;

function Remove_Last (A : Nat_Array) return Nat_Array is
(A (A’First .. A’Last - 1))
with Pre => A’Length > 0;

function Occ (A : Nat_Array; E : Natural) return Nb_Occ is
(if A’Length = O then O
elsif A (A’Last) = E then Occ (Remove_Last (A), E) + 1
else Occ (Remove_Last (A), E))
with
Post => Occ’Result <= A’Length;

function Is_Perm (A, B : Nat_Array) return Boolean is
(for all E in Natural => Occ (A, E) = 0Occ (B, E));

end Perm;
27/33



Verification case study 3

procedure Selection_Sort (A : in out Nat_Array) is
Smallest : Positive;

begin
if A’Length = O then return; end if;

for K in A’First .. A’Last - 1 loop
Smallest := Index_0f_Minimum (A (K .. A’Last));

if Smallest /= K then
Swap (Values => A, X => K, Y => Smallest);
end if;

pragma Loop_Invariant
(for all I in A’First .. K =>
(for all J in I + 1 .. A’Last =>
A (D <=4 (D))
pragma Loop_Invariant (Is_Perm (A’Loop_Entry, A));
end loop;

end Selection_Sort;

28/33



Verification case study 4

Full info in GNATprove by Example section of SPARK UG

» Definition of Index_0f _Minimum function
» Swap contract
procedure Swap (Values : in out Nat_Array;
X : in Positive;
Y : in Positive)
with
Pre => (X in Values’Range and then
Y in Values’Range and then
X/=Y),

Post => Is_Perm (Values’01ld, Values)

and Values (X) = Values’01d (Y)

and Values (Y) = Values’01d (X)

and (for all Z in Values’Range =>
(if Z /=X and Z /=Y
then Values (Z) = Values’01d (Z)))

> Justification for Swap realising its specification
» Pragma assertions provide hints to prover

» Ghost loop helps establish Is_Perm (Values’01d, Values)

29/33



Levels of formal verification

v

Flow analysis

v

Checking freedom from run-time exceptions
» Dominant level for SPARK tools
» Not fully hands-off: typically need a few assertions
(preconditions, postconditions, loop invariants, . ..)
» Might have some VCs needing checking by hand or by
manually-guided proof in a proof assistant

P> Property checking

» Checking of critical properties that are relatively simple to
express and generate VCs provable automatically

» Full checking of functional behaviour against specifications
» Full automation possible for small programs, perhaps with
assertion hints.
» For larger programs and more complex properties, proof
assistants needed. Proof by hand not tractable.

30/33



Executability of assertions
Virtually all SPARK assertions are executable.

Are issues with quantifiers:

» Each for all or for some quantifier is translated into a
loop over the values in the range quantified over
> When ranges are finite, loops terminate
» Ranges finite nearly always

» An issue with Universal_Integer type, implemented with a
BigNum package.

Executability makes run-time assertion checking feasible

» Compilers have flags to optionally add checking to object code
» Care needed because of possible performance issues

31/33



Use of assertions in run-time checking

Several benefits:

>

| 2

Catches bugs during testing

Gives programmers opportunity to gradually learn about and
experiment with assertions

Checks program inputs during tests conform to expectations

Can check some complex properties that cannot be handled
statically

32/33



Parallel story in digital hardware design world

Adoption of assertions much higher than in software world

> Exist standardised LTL++ assertion languages

SVA SystemVerilog Assertions
PSL Property Specification Language

» Support from all standard commercial simulators

» Support also from formal and semi-formal commercial model
checkers

» Integrated into both verification and design methodologies

» Directing test case generation
» Measuring functional coverage
» Assertion Based Design

Similar methodologies relevant in software world

33/33



