
Verification with Spark

Paul Jackson
Paul.Jackson@ed.ac.uk

University of Edinburgh

Formal Verification
Autumn 2023



Using assertions to specify program properties

I An assertion is a logical formula that is associated with a
point in the control-flow of a program.
It describes a property of the program state that is desired
true at that point.

I Assertions usually expressed in the language of Boolean
expressions provided by the programming language, sometimes
extended with ∀ and ∃ quantifiers.

I FV approaches try to logically establish that assertions hold
for all possible execution paths leading to them.

2 / 33



Assertion pragmas

if X > Y then

Max := X;

else

Max := Y;

end if;

pragma Assert (Max >= X and Max >= Y

and (Max = X or Max = Y)

);

3 / 33



Freedom from runtime exceptions
Common causes of runtime exceptions include

I arithmetic overflow

I divide by zero

I array index out of bounds
I subrange/subtype constraint violation

subtype T1 is Integer range 1 .. 10;

V : T1 := 10; -- OK

begin

V := 1 + V - 1; -- OK

V := 1 + V; -- EXCEPTION POSSIBLY THROWN

Assertions automatically inserted to check these never occur

Formal analysis simplified by not having to consider exception
scenarios

4 / 33



Runtime errors example

Consider

A (I + J) := P / Q;

What runtime errors might occur?

Answer:

I I+J might overflow the base-type of the types of I and J

I I+J might be outside the array index subtype

I P/Q might overflow the base-type of the types of P and Q

I P/Q might be outside the array element subtype

I Q might be zero

5 / 33



Preconditions

A precondition is an assertion attached to the start of a
subprogram (a function or a procedure).

procedure Increment (X: in out Integer)

with Pre => (X < Integer’Last)

is

begin

X := X + 1;

end Increment;

I FV assumes subprogram preconditions hold when checking
assertions within the subprogram

I FV checks preconditions hold at each subprogram invocation

6 / 33



Postconditions

A postcondition is an assertion attached to control-flow points of a
subprogram where control flow exits the subprogram

function Total_Above_Threshold (Threshold : in Integer)

return Boolean

with

Post => Total_Above_Threshold’Result = Total > Threshold;

procedure Add_To_Total (Incr : in Integer) with

Post => Total = Total’Old + Incr;

I When analysing a subprogram, FV checks all postconditions
hold

I At each control flow point for the return of a call to a
subprogram, FV assumes any subprogram postconditions hold

7 / 33



Combining preconditions and postconditions

procedure Increment (X: in out Integer)

with Pre => (X < Integer’Last)

Post => X = X’Old + 1;

procedure Sqrt (Input : in Integer; Res: out Integer)

with

Pre => Input >= 0,

Post => (Res * Res) <= Input and

(Res + 1) * (Res + 1) > Input;

8 / 33



Design by contract

Preconditions and postconditions

I form a contract between subprogram users and the
subprogram implementers.

I if rich enough, provide full documentation to users – insulate
them from implementation details

I promote modular design
I Extend the abstract data type (ADT) paradigm that inspired

OO programming and the separation of package specifications
and bodies in Ada.

I promote modular verification.

Hence enable scaling of FV.

9 / 33



Contract use example

procedure Add2 (X : in out Integer)

with Pre => (X <= Integer’Last - 2)

is

begin

Increment (X);

Increment (X);

end Add2;

Will pre-conditions of both Increment calls be verified?

Answer: yes if Increment contract is specified with a
post-condition.

10 / 33



Spark flow analysis
Considers two issues:

I Interaction between subprograms and global state – what
global state is read from and written to.

I Dependence of outputs of subprograms on inputs
I Inputs and outputs include both parameters and global

variables

Spark notation allows desired flows to be specified

Tools then check flow specifications met

I Specification properties might related to code security

I Checks identify uninitialised variables, unused variables,
ineffective code.

Formal assertion checking relies on flow analysis in various ways
(e.g. checking persistence of asserted properties from one place to
another)

11 / 33



Global flow contract examples

procedure Set_X_To_Y_Plus_Z with

Global => (Input => (Y, Z), -- reads values of Y and Z

Output => X); -- modifies value of X

procedure Set_X_To_X_Plus_Y with

Global => (Input => Y, -- reads value of Y

In_Out => X); -- modifies value of X

-- also reads its initial value

Sometimes known as data flow or just data dependencies in
Spark documentation.

12 / 33



Intra-subprogram flow contract examples

procedure Swap (X, Y : in out T) with

Depends => (X => Y, -- X depends on initial value of Y

Y => X); -- Y depends on initial value of X

procedure Set_X_To_Y_Plus_Z with

Depends => (X => (Y, Z)); -- X depends on Y and Z

Sometimes known as information flow or just flow dependencies in
Spark documentation.

13 / 33



Statically checking an assertion

Involves considering all execution paths leading to it.

Branches and joins in execution paths due to conditionals are no
problem.

if X > Y then

Max := X;

else

Max := Y;

end if;

pragma Assert (Max >= X and Max >= Y);

Loops are an issue

14 / 33



Execution paths involving loops
Full set of execution paths through a loop

I might not be fixed size – could be data dependent

I could be very large

subtype Natural is Integer range 0 .. Integer’Last;

procedure Increment_Loop (X : in out Integer;

N : in Natural) with

Pre => X <= Integer’Last - N,

Post => X = X’Old + N

is

begin

for I in 1 .. N loop

X := X + 1;

end loop;

end Increment_Loop;

15 / 33



Breaking loops with assertions
A Loop invariant is an assertion inserted into a loop to split
execution paths into well-defined segments.

procedure Inc_Loop_Inv (X : in out Integer; N : Natural) with

Pre => X <= Integer’Last - N,

Post => X = X’Old + N

is

begin

for I in 1 .. N loop

X := X + 1;

pragma Loop_Invariant (X = X’Loop_Entry + I);

end loop;

end Inc_Loop_Inv;

Segments are:

I Pre −→ Loop_Invariant
I Loop_Invariant−→ Loop_Invariant
I Loop_Invariant−→ Post
I Pre −→ Post for when N = 0

16 / 33



Euclidean linear division

procedure Linear_Div (I : in Integer; J : in Integer;

Q : out Integer; R : out Integer;)

with

Pre => I >= 0 and J > 0

Post => Q >= 0 and R >= 0 and R < J and J * Q + R = I

is

begin

Q := 0;

R := I;

while R >= J loop

pragma Loop_Invariant

(R >= 0 and Q >= 0 and J * Q + R = I);

Q := Q + 1;

R := R - J;

end loop;

end Linear_Div;

17 / 33



Looping through an array

subtype Index_T is Positive range 1 .. 1000;

subtype Component_T is Natural;

type Arr_T is array (Index_T) of Component_T;

procedure Validate_Arr_Zero (A : Arr_T; Success : out Boolean)

with

Post => Success = (for all J in A’Range => A(J) = 0)

is

begin

for J in A’Range loop

if A(J) /= 0 then

Success := False;

return;

end if;

pragma Loop_Invariant ???;

end loop;

Success := True;

end Validate_Arr_Zero;

18 / 33



Looping through an array, with a loop invariant
subtype Index_T is Positive range 1 .. 1000;

subtype Component_T is Natural;

type Arr_T is array (Index_T) of Component_T;

procedure Validate_Arr_Zero (A : Arr_T; Success : out Boolean)

with

Post => Success = (for all J in A’Range => A(J) = 0)

is

begin

for J in A’Range loop

if A(J) /= 0 then

Success := False;

return;

end if;

pragma Loop_Invariant

(for all K in A’First .. J => A(K) = 0);

end loop;

Success := True;

end Validate_Arr_Zero; 19 / 33



Discovery & inference of loop invariants

I Reasoning with loop invariants is very much like induction on
naturals

P(0) ∀n : N.P(n)⇒ P(n + 1)

∀n : N.P(n)

I Checking loop invariant holds on first iteration like base case
of induction

I Checking loop invariant holds on later iteration, given it holds
on immediately previous one like step case of induction

I Loop invariants often discovered by generalising
post-condition, just as proof by induction involves first
generalising the statement to be proven.

I Automatic discovery of loop invariants is an active research
field

I Some cases are easy
I Gnatprove tool does infer bounds on for-loop indexes.

20 / 33



Showing loops terminate
Let Σ be the set of possible program states,
〈W , <〉 be a well-founded order.

To show a loop terminates:

1. define a function v : Σ→W
2. show

v(s ′) < v(s)

whenever s is the state at some point in the loop and s ′ is the
state at the same point one iteration on.

Function v is called a variant function.

In Spark

I W is most typically some bounded arithmetic type, e.g.
Integer.

I < is conventional order or converse
I Also can have W containing tuples of arithmetic values,

lexicographically ordered
21 / 33



Loop termination example

subtype Index is Positive range 1 .. 1_000_000;

type Text is array (Index range <>) of Integer;

function LCP (A : Text; X, Y : Integer) return Natural with

Pre => X in A’Range and then Y in A’Range,

is

L : Natural;

begin

L := 0;

while X + L <= A’Last

and then Y + L <= A’Last

and then A (X + L) = A (Y + L)

loop

pragma Loop_Variant (Increases => L);

L := L + 1;

end loop;

return L;

end LCP;

22 / 33



Ghost code

Ghost code is extra code added to Spark programs that is only
used for specification purposes.

Never affects normal function of programs

I Spark language provides syntax identifying ghost code.
Spark tools check that normal code never uses ghost code

Does impact performance when run-time assertion checking
enabled

23 / 33



Ghost variables

Using a ghost variable to capture the initial value of a parameter.

procedure Do_Something (X : in out T) is

X_Init : constant T := X with Ghost;

begin

Do_Some_Complex_Stuff (X);

pragma Assert (Is_Correct (X_Init, X));

-- It is OK to use X_Init inside an assertion.

X := X_Init;

-- Compilation error:

-- Ghost entity cannot appear in this context

24 / 33



Ghost functions and procedures

Uses include

I Factoring out common expressions in contracts

I Abstracting state

type Queue is private;

function Get_Model (S : Queue) return Nat_Array with Ghost;

-- Returns an array as a model of a queue

procedure Push_Front (S : in out Queue; E : in Natural) with

Pre => Get_Model (S)’Length < Max,

Post => Get_Model (S) = E & Get_Model (S)’Old;

procedure Pop_Back (S : in out Queue; E : out Natural) with

Pre => Get_Model (S)’Length > 0,

Post => Get_Model (S) & E = Get_Model (S)’Old;

25 / 33



Verification case study 1

Verification of Selection sort

I Shows where Spark verification starts needing major user
guidance

package Sort with SPARK_Mode is

-- Sorts the elements in the array Values in ascending order

procedure Selection_Sort (Values : in out Nat_Array)

with

Post => Is_Perm (Values’Old, Values) and then

(if Values’Length > 0 then

(for all I in Values’First .. Values’Last - 1 =>

Values (I) <= Values (I + 1)));

end Sort;

26 / 33



Verification case study 2
Definition of Is_Perm function

package Perm with SPARK_Mode, Ghost is

subtype Nb_Occ is Integer range 0 .. 100;

function Remove_Last (A : Nat_Array) return Nat_Array is

(A (A’First .. A’Last - 1))

with Pre => A’Length > 0;

function Occ (A : Nat_Array; E : Natural) return Nb_Occ is

(if A’Length = 0 then 0

elsif A (A’Last) = E then Occ (Remove_Last (A), E) + 1

else Occ (Remove_Last (A), E))

with

Post => Occ’Result <= A’Length;

function Is_Perm (A, B : Nat_Array) return Boolean is

(for all E in Natural => Occ (A, E) = Occ (B, E));

end Perm;
27 / 33



Verification case study 3
procedure Selection_Sort (A : in out Nat_Array) is

Smallest : Positive;

begin

if A’Length = 0 then return; end if;

for K in A’First .. A’Last - 1 loop

Smallest := Index_Of_Minimum (A (K .. A’Last));

if Smallest /= K then

Swap (Values => A, X => K, Y => Smallest);

end if;

pragma Loop_Invariant

(for all I in A’First .. K =>

(for all J in I + 1 .. A’Last =>

A (I) <= A (J)));

pragma Loop_Invariant (Is_Perm (A’Loop_Entry, A));

end loop;

end Selection_Sort; 28 / 33



Verification case study 4
Full info in Gnatprove by Example section of Spark UG

I Definition of Index_Of_Minimum function
I Swap contract

procedure Swap (Values : in out Nat_Array;

X : in Positive;

Y : in Positive)

with

Pre => (X in Values’Range and then

Y in Values’Range and then

X /= Y),

Post => Is_Perm (Values’Old, Values)

and Values (X) = Values’Old (Y)

and Values (Y) = Values’Old (X)

and (for all Z in Values’Range =>

(if Z /= X and Z /= Y

then Values (Z) = Values’Old (Z)))

I Justification for Swap realising its specification
I Pragma assertions provide hints to prover
I Ghost loop helps establish Is_Perm (Values’Old, Values)

29 / 33



Levels of formal verification

I Flow analysis

I Checking freedom from run-time exceptions
I Dominant level for Spark tools
I Not fully hands-off: typically need a few assertions

(preconditions, postconditions, loop invariants, . . . )
I Might have some VCs needing checking by hand or by

manually-guided proof in a proof assistant

I Property checking
I Checking of critical properties that are relatively simple to

express and generate VCs provable automatically

I Full checking of functional behaviour against specifications
I Full automation possible for small programs, perhaps with

assertion hints.
I For larger programs and more complex properties, proof

assistants needed. Proof by hand not tractable.

30 / 33



Executability of assertions

Virtually all Spark assertions are executable.

Are issues with quantifiers:

I Each for all or for some quantifier is translated into a
loop over the values in the range quantified over

I When ranges are finite, loops terminate
I Ranges finite nearly always
I An issue with Universal_Integer type, implemented with a

BigNum package.

Executability makes run-time assertion checking feasible

I Compilers have flags to optionally add checking to object code

I Care needed because of possible performance issues

31 / 33



Use of assertions in run-time checking

Several benefits:

I Catches bugs during testing

I Gives programmers opportunity to gradually learn about and
experiment with assertions

I Checks program inputs during tests conform to expectations

I Can check some complex properties that cannot be handled
statically

32 / 33



Parallel story in digital hardware design world

Adoption of assertions much higher than in software world

I Exist standardised Ltl++ assertion languages

SVA SystemVerilog Assertions
PSL Property Specification Language

I Support from all standard commercial simulators

I Support also from formal and semi-formal commercial model
checkers

I Integrated into both verification and design methodologies
I Directing test case generation
I Measuring functional coverage
I Assertion Based Design

Similar methodologies relevant in software world

33 / 33


