
Programming language semantics
and

verification condition generation

Paul Jackson
Paul.Jackson@ed.ac.uk

University of Edinburgh

Formal Verification
Autumn 2023



Using maths to verify software

1. Construct mathematical models of programs
I Highly non-trivial – most programming languages are complex

and have no formal description
I Particularly difficult when handling concurrency
I Most focus on functional behaviour. Only few handle

performance

2. Use maths and logic to precisely specify desired behaviour

3. Prove that the models satisfy the specifications

Notion of proof is broad: it might involve

I Applying rules of a program calculus

I Computing data-structures (e.g. BDDs in symbolic model
checking)

2 / 22



Mechanising software verification

I Many mechanised reasoning tools exist for checking the
validity of formulas in propositional or first-order logic

I So highly desirable to reduce program correctness to validity of
such formulas

Examples:

I The Spark FV tool uses the weakest precondition approach
to reduce program correctness to validity of formulas in
I SMT languages,
I input languages of first-order-logic automatic theorem provers
I input languages of interactive proof assistants

I Bounded model checkers reduce to validity of SAT or SMT
formulas

Proof assistants often can also handle the reductions themselves

3 / 22



IMP - a toy imperative programming language

I Numbers N m, n ::= . . . | −1 | 0 | 1 | 2 | . . .

I Variables Var x , y

I Integer arithmetic expressions Aexp

a ::= n | x | a0 + a1 | a0 − a1 | a0 × a1 | a0 ÷ a1 | a0 mod a1

I Boolean expressions Bexp

b ::= true | false | a0 = a1 | a0 ≤ a1 | ¬b | b0 ∧ b1 | b0 ∨ b1

I Commands Com

c ::= skip | x := a | co ; c1
| if b then c0 else c1 | while b do c

This is abstract syntax, ignoring parentheses

4 / 22



Operational semantics

I Define a set of states Σ as all functions σ : Var→ N

I Use relations to define how
I expressions evaluate to values in a given state
I commands execute, changing the program state.

5 / 22



Evaluation of arithmetic expressions

Use 3 place relation
〈a, σ〉 → n

where a is an arithmetic expression, σ the current state and n the
value of the expression.

Relation defined in syntax-directed way using rules:

〈n, σ〉 → n

〈x , σ〉 → σ(x)

〈a0, σ〉 → n0 〈a1, σ〉 → n1
〈a0 + a1, σ〉 → n

where n is n0 + n1

Similarly can define relation for Boolean expressions.

6 / 22



Big-step operational semantics for IMP

Relation
〈c , σ〉 → σ′

expresses that command c executed in initial state σ terminates in
final state σ′.

〈skip, σ〉 → σ

〈a, σ〉 → m

〈x := a, σ〉 → σ[m/x ]

〈c0, σ〉 → σ′′ 〈c1, σ′′〉 → σ′

〈c0 ; c1, σ〉 → σ′

7 / 22



Big-step operational semantics cont.

〈b, σ〉 → true 〈c0, σ〉 → σ′

〈if b then c0 else c1, σ〉 → σ′

〈b, σ〉 → false 〈c1, σ〉 → σ′

〈if b then c0 else c1, σ〉 → σ′

〈b, σ〉 → false

〈while b do c , σ〉 → σ

〈b, σ〉 → true 〈c , σ〉 → σ′′ 〈while b do c, σ′′〉 → σ′

〈while b do c , σ〉 → σ′

8 / 22



Program specifications

A basic way of specifying desired program behaviour is using
preconditions and postconditions.

We commonly write
{P} c {Q}

to express that if program c is started in a state satisfying
precondition P and if it terminates, it will terminate in a state
satisfying postcondition Q.

{P} c {Q} is known as a Hoare triple.

It can be defined semantically in terms of the big-step operational
semantics relation

|= {P}c{Q} .
= for all σ, σ′ ∈ Σ if σ |= P and 〈c , σ〉 → σ′ then σ′ |= Q

Doing proofs directly with the execution relation → is tedious.

9 / 22



Hoare logics

An alternative to reasoning directly with the execution relation is
using a calculus with Hoare triples.

An example rule:

{P} c0 {R} {R} c1 {Q}
{P} c0 ; c1 {Q}

Such calculi are known as Hoare logics.

Hoare logics can be good for paper proofs and proofs using an
interactive theorem prover, but are not the best for automation.

In the above rule, what is a recipe for R?

Weakest pre-condition based approaches are better.

10 / 22



Weakest pre-condition

The weakest pre-condition function WP(, ) can be defined
semantically:

WP(c ,Q)
.

= {σ | for all σ′ if 〈c , σ〉 → σ′ then σ′ |= Q}

(Also it can be defined syntactically, so it computes a predicate
satisfied by exactly the states calculated by the semantic definition
above.)

WP(, ) is closely related to Hoare triples. We have

(for all σ if σ |= P then σ ∈WP(c,Q)) iff |= {P} c {Q}

and in particular
{WP(c ,Q)} c {Q}

WP(c ,Q) is indeed the weakest pre-condition of c and Q.

11 / 22



How weakest pre-conditions can be used for verification

If we can compute WP(c ,Q) as a formula, given formula for Q,
then proving the predicate logic formula

∀x̄ . P ⇒WP(c ,Q)

is sufficient for establishing

{P} c {Q}

Here

I The ∀x̄ is a quantification over all the variables in Var
– the syntactic equivalent of quantifying over all states

I ∀x̄ . P ⇒WP(c ,Q) is called a verification condition or VC

12 / 22



Weakest precondition equations

WP(skip,Q) = Q

WP(x := a,Q) = Q[x 7→ a]

WP(c0 ; c1,Q) = WP(c0,WP(c1,Q))

WP(if b then c0 else c1,Q) = (b ⇒WP(c0,Q))

∧ (¬b ⇒WP(c1,Q))

WP(while b do c,Q) = (b ⇒WP(c ; while b do c ,Q))

∧ (¬b ⇒ Q)

Here now the left and right hand sides of the equations are
Boolean expressions in the program variables.

Given formula Q and c without while loops, equations specify how
to compute WP(c ,Q) as a formula.

If c has while loops, computation would not terminate.
13 / 22



Addressing the loop issue
Rough idea:

1. Add a loop invariant assertion to every loop of a program c
I These assertions cut the control flow of c into loop-free

segments

2. Show {P} c {Q} by showing {P ′} c ′ {Q ′} for each segment c ′

making up c .
I Each P ′ is either P or a loop invariant.
I Each Q ′ is either a loop invariant or Q.

3. Show {P ′} c ′ {Q ′} by proving

∀x̄ . P ′ ⇒WP(c ′,Q ′)

A detail:

Segments might have multiple initial and final points.
Must check {P ′} c ′′ {Q ′} for each path c ′′ in segment c ′

14 / 22



Program segments
To express segments, need new command

assume A – assume Boolean expression A

with
〈b, σ〉 → true

〈assume b, σ〉 → σ

WP(assume A,Q) = A⇒ Q

A while loop with invariant I

{I}while b do c

has

I I terminating the segment for the code before the loop
I a segment assume b ; c starting and ending with I .
I a segment assume ¬b starting with I and continuing with

the code after the loop
15 / 22



A program and its control flow graph

{P}
r := 1 ;
if n > 0 then
{I}while r × r ≤ n do r := r + 1

else
skip
{Q}

P QIr := 1
n >

0

¬(n > 0)

r × r ≤ n

¬(r × r ≤ n)

r := r + 1

skip

where assume b is abbreviated to b
16 / 22



Splitting control flow graph into segments
Control flow graph with cycle for loop:

P QIr := 1
n >

0

¬(n > 0)

r × r ≤ n

¬(r × r ≤ n)

r := r + 1

skip

Splitting at loop invariant I yields acyclic segments:

P
Q

I

I

I

I

r := 1
n >

0

¬(n > 0)

r × r ≤ n

¬(r × r ≤ n)

r := r + 1

skip

17 / 22



Enumerating paths of each segment

With segments:

P
Q

I

I

I

I

r := 1
n >

0

¬(n > 0)

r × r ≤ n

¬(r × r ≤ n)

r := r + 1

skip

the paths are:

P

P

Q

Q

I

I

I

I

r := 1

r := 1

n > 0

¬(n > 0)

r × r ≤ n

¬(r × r ≤ n)

r := r + 1

skip

18 / 22



VC generation

Define two functions Pre(, ) and VC(, ).

Pre(c ,Q) is like WP(c ,Q) except it only computes WP(c ,Q) for
the start segment of c .

Pre(skip,Q) = Q

Pre(x := a,Q) = Q[x 7→ a]

Pre(c0 ; c1,Q) = Pre(c0,Pre(c1,Q))

Pre(if b then c0 else c1,Q) = (b ⇒ Pre(c0,Q))

∧ (¬b ⇒ Pre(c1,Q))

Pre({I}while b do c ,Q) = I

19 / 22



VC generation cont.

VC(c ,Q) computes VCs for all but the start segment of c.

VC(skip,Q) = true

VC(x := a,Q) = true

VC(c0 ; c1,Q) = VC(c0,Pre(c1,Q)) ∧VC(c1,Q)

VC(if b then c0 else c1,Q) = VC(c0,Q) ∧VC(c1,Q)

VC({I}while b do c ,Q) = (I ∧ b ⇒ Pre(c , I ))

∧(I ∧ ¬b ⇒ Q)

20 / 22



Soundness of VC generation

If
|= ∀x̄ . (P ⇒ Pre(c ,Q)) ∧ VC(c ,Q)

then
|= {P} c {Q}

21 / 22



Further reading

See Concrete Semantics by Nipkow and Klein
http: // www. concrete-semantics. org

I Section 7.1 on IMP language

I Section 7.2 on big-step semantics

I Section 12.4 on VC generation

22 / 22

http://www.concrete-semantics.org

