The CBMC bounded model checker for C

Paul Jackson
Paul.Jackson@ed.ac.uk

University of Edinburgh

Formal Verification
Autumn 2023

Bounded Model Checking

» Bounded Model Checking (BMC) is the most successful
formal validation technique in the hardware industry

» Advantages:

v’ Fully automatic
v’ Robust
v Lots of subtle bugs found

v

Idea: only look for bugs up to specific depth
» Good for many applications, e.g., embedded systems

» CBMC and related tools apply BMC ideas to software

2/15

Encoding straight line code and conditionals

Adopt Symbolic Execution strategy:
» Introduce new variable name for each re-assignment

» At control-flow join points, use conditional guards to select
variable values

3/15

Encoding straight line code and conditionals

Adopt Symbolic Execution strategy:
» Introduce new variable name for each re-assignment

» At control-flow join points, use conditional guards to select
variable values

int abs (int x) {
int y = x;

if (x < 0) {
y = -x;

}

return y;

3/15

Encoding straight line code and conditionals

Adopt Symbolic Execution strategy:
» Introduce new variable name for each re-assignment

» At control-flow join points, use conditional guards to select
variable values

int abs (int x) { int abs (int x1) {
int y = x; int y2 = x1;
if (x < 0) { int guardl = (x1 < 0);
y = -X; int y3 = -x1;
} int y4 = (guardl) ? y3 : y2;
return y; return y4;
} }

3/15

Unrolling Loops

This essentially amounts to unwinding loops:

while(cond)
Body;

4/15

Unrolling Loops

This essentially amounts to unwinding loops:

if (cond) {
Body;
while(cond)
Body;

4/15

Unrolling Loops

This essentially amounts to unwinding loops:

if (cond) {
Body;
if (cond) {
Body;
while(cond)
Body;

4/15

Unrolling Loops

This essentially amounts to unwinding loops:

if (cond) {
Body;
if (cond) {
Body;
if (cond) {
Body;
while(cond)
Body;

4/15

Unrolling Loops

This essentially amounts to unwinding loops:

if (cond) {
Body;
if (cond) {
Body;
if (cond) {
Body;
assume(!cond);

4/15

Completeness

BMC, as discussed so far, is incomplete.
It only refutes, and does not prove.

How can we fix this?

5/15

Unwinding Assertions

Let's revisit the loop unwinding idea:

while(cond)
Body;

6/15

Unwinding Assertions

Let's revisit the loop unwinding idea:

if (cond) {
Body;
while(cond)
Body;

6/15

Unwinding Assertions

Let's revisit the loop unwinding idea:

if (cond) {
Body;
if (cond) {
Body;
while(cond)
Body;

6/15

Unwinding Assertions

Let's revisit the loop unwinding idea:

if (cond) {
Body;
if (cond) {
Body;
if (cond) {
Body;
while(cond)
Body;

6/15

Unwinding Assertions

Let's revisit the loop unwinding idea:

if (cond) {
Body;
if (cond) {
Body;
if (cond) {
Body;
assert (!cond);

6/15

CBMC VC derivation 1
Q. Given program

int 1i;

int p;

p=1;

for (i = 0; 1 <= n; i++) {
P=p*m;

assert p >= 1;

What VC might CBMC generate, if loop is unrolled two times and
we assume loop will not execute a third time?

A. Transform first to while loop, since easier to unroll
p=1;
i=0;
while (i <= n) {
P =p *m;
i=1+1;
}

assert(p >= 1); 7/15

CBMC VC derivation 2

Unroll loop 2 times and add assume statement for loop exiting at
that point

p=1;

i=0;

if (4 <= n) {
p=p*m
i=1+1;
if (i <= n) {

P=p*un;

i=d+ 1

assume('(i <= n));
}

}

assert(p >= 1);

8/15

CBMC VC derivation 3

Assign all variables exactly once. Compute guards for conditional
statements. Add conditional expressions for merging values.

pl = 1;
il = 0;
gl = i1 <= nl;
p2 = pl *ml; // gl
i2 = i1 + 1; // gl
g2 = (i2 <= n1);
p3 =p2 *xml; // gl & g2
i3 = i2 + 1; // gl & g2
assume(!(i3 <= n1));
p4d =gl ? (g2 7 p3 : p2) : pi;
i4 = g1 7 (g2 7 i3 : i2) : il; // Optional, since i4 unused
assert(p4d >= 1);

Comments track conditions under which assignments hold and help
with computing value merge expressions.

9/15

CBMC VC derivation 4

Convert to logical expression.

pr=1

AL =0

NgL= (i1 < n)

ANp2=p1*xm

Nipb=1ih+1

N g = (i2 <= n1)

ANp3=p2xm

ANigz=1I+1

A =(i3 < m) (translation of assume statement)
Aps=g17(827p3:p2): p1
/\i4:g1?(g2?i3:i2):i1

A —(ps > 1) (translation of assert statement)

If this is found unsatisfiable, then assertion holds.

10/15

Inlining function calls

» A standard compiler transformation

» Recursive definitions handled in similar way to loops

11/15

Inlining function calls

» A standard compiler transformation

» Recursive definitions handled in similar way to loops

Library calls

» Assumed to have non-deterministic behaviour

11/15

Pointers

How do we handle dereferencing in the program?

12/15

Pointers

How do we handle dereferencing in the program?

int *p;
p=malloc(sizeof(int)*5); p1 = &DO1
A DOI1; = ()\i.
o i = 17100 : DO1¢][i])
p[1]=100;

Here DO1 is an uninterpreted function and the formulas on the

right are in the theory of equality and uninterpreted functions
(EUF)

12/15

Pointers

How do we handle dereferencing in the program?

int *p;
p=malloc(sizeof(int)*5); p1 = &DO1
A DOI1; = ()\i.
o i = 17100 : DO1¢][i])
p[1]=100;

Here DO1 is an uninterpreted function and the formulas on the

right are in the theory of equality and uninterpreted functions
(EUF)

EUF handled by either SMT techniques or reduction to SAT.

12/15

Automatic property checks

Include

>

>

Buffer overflows: For each array access, check whether the
upper and lower bounds are violated.

Pointer safety: Search for NULL-pointer dereferences or
dereferences of other invalid pointers.

Division by zero: Check whether there is a division by zero in
the program.

Not-a-Number: Check whether floating-point computation
may result in NaNs.

Uninitialised local Check whether the program uses an
uninitialised local variable.

Data race: Check whether a concurrent program accesses a
shared variable at the same time in two threads.

13/15

CProver Too

JavaScript I—
=
Verio]

Asml Checks' LOOpSI Meml SIiceI

| Suite

— | Predicate Abs. |-;
— [IMPACT |
— [Abstract Intr. |-
- [BMC}———

| Goto programs I—

. [SymEx]

SAT / SMT

l

J Solver

11/31

14/15

Sources

CBMC: Bounded Model Checking for ANSI-C
Introductory slides on CBMC from CBMC website:
http://www.cprover.org/cbmc/

The CProver Suite of Verification Tools.
Martin Brain. 2016.
First part of a tutorial on CBMC and related tools given
at the FM 2016 conference.

15/15

http://www.cprover.org/cbmc/

	Completeness
	Unwinding Assertions

