
Formal Verification - Course Introduction1

Paul Jackson
Paul.Jackson@ed.ac.uk

University of Edinburgh

Formal Verification
Autumn 2023

1Including contributions by Elizabeth Polgreen
1 / 12



Overview

I Lecturer: Paul Jackson

I Lab demonstrators: Mohan Dantam & Paul Jackson

I Lecture Schedule:
Weeks 1-11, Mondays and Thursdays 15:10-16:00
I Monday: Room 2.12, Appleton Tower
I Thursday: Lecture Theatre 3, Appleton Tower

I Lab Schedule:
Weeks 3-10, Fridays: 11:10-13:00, Room 4.12, Appleton
Tower

I Discussion Forum: Piazza

2 / 12



Prerequisites for Course

I Students are expected to be familiar with discrete maths at a
level similar to our Year 2 Undergraduate Discrete
Mathematics and Probability course (INFR08031).

I Prior exposure to first-order logic is expected.

I Programming experience in an imperative language such as
Java, C or C++ is also essential for handling the material
related to software verification.

I Familiarity with Finite-State Automata concepts will be helpful

3 / 12



Assessment

I There are two assessed courseworks, each worth 15% of the
overall course mark:
I Coursework 1:

Handout: Mon Week 4 (9 Oct)
Due: 12 noon, Mon Week 6 (23 Oct)

I Coursework 2:
Handout: Mon Week 8 (6 Nov)
Due: 12 noon, Mon Week 10 (20 Nov)

Courseworks will largely involve practical work with FV tools

Additional unassessed exercises will introduce several of the
tools. Sample solutions will be provided.

I There is a final exam in Dec 2023, worth 70% of the overall
course mark.

The exam will cover all material from lectures, exercises and
courseworks.

4 / 12



How do you know your code is correct?

5 / 12



What is Formal Verification?

I FV is the use of mathematical techniques to verify the
correctness of various kinds of engineering systems; software
systems and digital hardware systems, for example.

I FV techniques are exhaustive and provide much stronger
guarantees of correctness than testing or simulation-based
approaches.

I FV is particularly useful
I for safety, security, and mission critical systems,
I when failure is very costly,
I when failure can damage reputation,
I when system behaviour is highly complex and hard to

understand

6 / 12



Software Bugs in the real world - Therac-25 (1980s)

I Radiation machine for cancer treatment

I At least 6 cases of overdoses (∼ 100 times dose)

I 3 patients died

I Source: design error in the control software (race condition)

I Software written in assembly language

7 / 12



Software Bugs in the real world - Ariane-5 (1996)

I Rocket flipped 90 degrees in wrong direction shortly after
launch

I Caused by overflow on floating-point to integer conversion

I One of the most expensive software failures ever

8 / 12



Industrial Examples of Formal Verification

I Intel: FV now largely-replaces simulation when verifying
microprocessor designs

I Microsoft: 3rd party drivers are must pass FV checks of the
absence of concurrency bugs

I Toyota: verification of automotive source code using bounded
model checking

I Amazon Web Services: big push on FV. FV used to verify
boot-code for EC2, policies for S3 buckets + more

9 / 12



Syllabus

Topics covered will include

I CTL and LTL model checking

I Use of SAT & SMT solvers as reasoning engines

I the BDD data-structure used by many model checkers

I Formal models of software based on operational semantics

I Assertion-based software verification using verification
condition generation and SMT solvers

I Take-up of FV by industry and the challenges to its wider
adoption

10 / 12



Course Approach

I Practical focus on tools and techniques used today in industry
or likely to be used in future

I Introduces the underlying mathematical and
automated-reasoning techniques

Course should be of interest to both

I those planning a career in industry areas (e.g. software
engineering, security) where FV could be useful, and

I those interested in research in formal verification and
automated reasoning.

11 / 12



Tools

I NuSMV, NuXmv model checkers

I MiniSAT, Z3 SMT solver and Z3 python API

I SPARK and Why3 assertion-based software verification tools

I CBMC bounded model checker for C programs

I . . .

12 / 12


	Section 1 Title

