
Model Checking Overview1

Paul Jackson
Paul.Jackson@ed.ac.uk

University of Edinburgh

Formal Verification
Autumn 2023

1Including contributions by Jacques Fleuriot and Bob Atkey
1 / 10



Goal of Model Checking
Concerned with automatically checking whether a formal model of
some system has particular desired properties.

Systems

I Digital hardware

I Software, both sequential and concurrent

I Communication protocols

I Cyber-physical systems

I Biological systems

I . . .

Properties of interest

I Functional - logical behaviour

I Dynamic - behaviour over time

I Security

I . . .
2 / 10



Formal Models and Specifications

Formal models capture system behaviour of interest. Could involve

I Discrete or continuous time

I Non-determinism - handling input or hiding implementation
details

I Probability

I Finite or infinite possible states

I Discrete and/or continuous state components

I . . .

Formal property languages used for specifying properties of interest.

Alternatively,

I Desired properties can be captured in abstract formal models.

I Model checking then establishes whether all behaviours of the
model of interest are consistent with the abstract model

3 / 10



Model Checking vs. Simulation & Testing

Testing is a standard approach for verifying software

Simulation is a standard approach for verifying digital hardware
designs.

I Model checking considers all possible behaviours, starting from
all possible initial states and considering all possible inputs
I Simulation & testing are concerned with single runs or

sampling of all possible behaviours

I Model checking provides results with logical certainty

4 / 10



Production of Counter-examples by Model Checking

When model checking fails, often counter-examples can be
generated to help diagnose problems with model or properties.

5 / 10



Focus of Model-Checking Part of Course

Primarily will be concerned with
I Finite-state, discrete-time, non-deterministic models

I Suprisingly-wide applicability.
I Such models can be created as abstractions or approximations

of more general classes of models (e.g. with large or infinite
state, continuous state and continuous time)

I Properties expressed in temporal logics

6 / 10



Transition-System Models

A transition-system model of some system has

I A finite set of states

I A subset of states considered the initial states

I A transition relation which, given a current state, describes
which next states a system can transition into.

7 / 10



Non-determinism

In general system descriptions are non-deterministic

I A system is non-deterministic when, from some state there are
multiple alternative next states the system could transition to.

I Non-determinism good for
I Modelling alternate inputs to the system from its environment

(External non-determinism)
I Allowing model to be under-specified, allowing it to capture

many possible system implementations. (Internal
non-determinism)

Very common when modelling concurrency

8 / 10



Specifying Model Properties

I Interested in specifying behaviours of systems over time

I Elementary parts of specifications refer to properties of
individual states at particular points in time

I Temporal specifications then relate such properties at different
times
I At all times, the read and write signals are never

simultaneously asserted (at a logic ‘1’)
I If a request signal is asserted at some time, a corresponding

grant signal will be asserted within 10 time units.

9 / 10



Linear & Branching Time
Linear Time

I Considers paths (sequences of states)

I If system non-deterministic, many paths for each initial state
I Questions of form

I For all paths, does some path property hold?
I Does there exist a path such that some path property holds?

Most basic linear-time logic is LTL (Linear Temporal Logic)

Branching Time

I Considers tree of possible future states from each initial state

I If system non-deterministic at some state, tree forks
I Questions more complex. E.g.

I For all states reachable from an initial state, does there exist
an onwards path to a state satisfying some property?

Most basic branching-time logic is CTL (Computation Tree Logic)

Temporal logic CTL* incorporates both CTL and LTL.
10 / 10


	Section 1 Title

