Linear Temporal Logic¹

Paul Jackson Paul.Jackson@ed.ac.uk

University of Edinburgh

Formal Verification Autumn 2023

¹Including contributions by Jacques Fleuriot and Bob Atkey

LTL Syntax

Syntax of LTL formulas ϕ :

 $\phi ::= p \mid \neg \phi \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \Rightarrow \phi \mid \mathbf{X} \phi \mid \mathbf{F} \phi \mid \mathbf{G} \phi \mid \phi \mathbf{U} \phi$

where $p \in$ Atom and Atom is a set of atomic propositions

Temporal operators are

- X NeXt 🔿
- **G** Globally □
- **F** Future ◊
- **U** Until

Other temporal operators include W(Weak until) and R(Release)

Precedence high-to-low: (X , F , G , \neg), (U , R , W), (\land , \lor), \Rightarrow

► So $\mathbf{F} p \land \mathbf{G} q \Rightarrow \neg p \mathbf{U} r$ means $((\mathbf{F} p) \land (\mathbf{G} q)) \Rightarrow ((\neg p) \mathbf{U} r)$

Meaning of LTL Operators

LTL Operators are considered either to hold or not hold at each position on an execution path

of a transition-system model.

Here, the s_i are the successive states of the path, and

indicates a transition in one step from state s_i to state s_{i+1} .

X – Next

 $\mathbf{X}\,\phi$ holds at a position if ϕ holds at the next position

F – Future

F ϕ holds at a position if ϕ holds at some future position (including the current position)

$\boldsymbol{G}-\operatorname{Globally}$

 $\mathbf{G} \phi$ holds at a position if ϕ holds at all positions in the future (including the current position)

U – Until

- $\phi \; \mathbf{U} \; \psi$ holds at some position if
 - 1. ψ holds at some future position (including current position), and
 - 2. ϕ holds at all positions from current position up to just before where ψ holds

LTL Formula Examples

- 1. **G** invar 'invar' is always true (is an invariant)
- 2. $\textbf{G} \neg (\text{read} \land \text{write})$ 'read' and 'write' are never asserted at the same time
- 3. **G** (request \Rightarrow **F** grant) If 'request' is asserted, then eventually 'grant' is asserted
- 4. **G** (request \Rightarrow (request **U** grant)) If 'request' is asserted, then eventually 'grant' is asserted, and, up until then, 'request' continues to be asserted

More LTL Formula Examples

5. $F(\text{open} \land X F \text{close})$

At some time in the future 'open' is asserted, and then at some time further, at least one step further, 'close' is asserted

6. **GF** enabled

'enable' is infinitely-often asserted

7. FG stable

'stable' is eventually always asserted

LTL Semantics 1: Transition Systems and Paths

Definition (Transition System) A transition system $\mathcal{M} = \langle S, \rightarrow, L, I \rangle$ consists of

such that $\forall s. \exists t. s \rightarrow t.$

Definition (Path)

A path π in a model $\mathcal{M} = \langle S, \rightarrow, L, I \rangle$ is an infinite sequence of states s_0, s_1, \ldots such that $s_0 \in I$ and $\forall i \ge 0$. $s_i \rightarrow s_{i+1}$. We write the path as $s_0 \rightarrow s_1 \rightarrow \ldots$.

LTL Semantics 2: Satisfaction by Path

Satisfaction relation $\pi \models^i \phi$ read as "path π at position i satisfies LTL formula ϕ ".

$$\begin{split} \pi \models^{i} \top \\ \pi \not\models^{i} \mu & \text{iff} \quad p \in L(s_{i}) \\ \pi \models^{i} \rho & \text{iff} \quad \pi \not\models^{i} \phi \\ \pi \models^{i} \neg \phi & \text{iff} \quad \pi \not\models^{i} \phi \text{ and } \pi \models^{i} \psi \\ \pi \models^{i} \phi \land \psi & \text{iff} \quad \pi \models^{i} \phi \text{ or } \pi \models^{i} \psi \\ \pi \models^{i} \phi \Rightarrow \psi & \text{iff} \quad \pi \models^{i} \phi \text{ or } \pi \models^{i} \psi \\ \pi \models^{i} \varphi \Rightarrow \psi & \text{iff} \quad \pi \models^{i} \phi \text{ implies } \pi \models^{i} \psi \\ \pi \models^{i} \mathbf{X} \phi & \text{iff} \quad \pi \models^{i+1} \phi \\ \pi \models^{i} \mathbf{F} \phi & \text{iff} \quad \exists j \ge i. \pi \models^{j} \phi \\ \pi \models^{i} \mathbf{G} \phi & \text{iff} \quad \forall j \ge i. \pi \models^{j} \psi \text{ and } \forall k \in \{i..j-1\}. \pi \models^{k} \phi \end{split}$$

LTL Semantics 3: Alternative Satisfaction by Path

Alternatively, we can define $\pi \models \phi$ using the notion of *i*th suffix $\pi^i = s_i \rightarrow s_{i+1} \rightarrow \ldots$ of a path $\pi = s_0 \rightarrow s_1 \rightarrow \ldots$

E.g. write

$$\pi \models \mathbf{G} \phi \quad \text{iff} \quad \forall j \ge 0. \ \pi^j \models \phi$$

instead of

$$\pi \models^{i} \mathbf{G} \phi \quad \text{iff} \quad \forall j \ge i. \ \pi \models^{j} \phi$$

- π |=ⁱ φ better for understanding and needed for past time operators.
- $\pi \models \phi$ needed for semantics of CTL branching-time temporal logic.

LTL Semantics 4: Satisfaction by Model

We write

$$\mathcal{M}, \mathbf{s} \models \phi$$

if, for every execution path π of model ${\mathcal M}$ starting at state ${\it s},$ we have

$$\pi \models^{\mathsf{0}} \phi$$

We write

.

$$\mathcal{M} \models \phi$$

if, for every state s in the set of initial states of model \mathcal{M} , we have $\mathcal{M}, s \models \phi$.

Expand formulas by using semantics: e.g.

$$\pi \models^{0} \mathbf{F} \mathbf{G}$$
 stable $\equiv \exists i \geq 0. \forall j \geq i.$ stable $\in L(s_{i})$

Exercise: expand the rest of the example formulas a few slides back.

\mathbf{R} – Release

- $\phi \; \mathbf{R} \; \psi$ holds at a position, if either
 - 1. ψ holds for ever from that position onwards, or
 - 2. a. ϕ holds at some future position, and
 - b. ψ holds from the current position to up to and including when ϕ holds

 ϕ releases ψ

$$\pi \models^{i} \phi \mathbf{R} \psi \quad \text{iff} \quad (\forall j \ge i. \ \pi \models^{j} \psi) \text{ or } \\ \exists k \ge i. \ \pi \models^{k} \phi \text{ and } \forall j \in \{i..k\}. \ \pi \models^{j} \psi$$

W – Weak Until

 $\phi \, \mathbf{W} \, \psi$ holds at a position, if either

- 1. $\phi \ \mathbf{U} \ \psi$ holds there, or
- 2. $\mathbf{G}\phi$ holds there

$$\begin{split} \pi \models^i \phi \, \mathbf{W} \, \psi & \text{iff} \quad (\forall j \ge i. \ \pi \models^j \phi) \text{ or} \\ \exists k \ge i. \ \pi \models^k \psi \text{ and } \forall j \in \{i..k-1\}. \ \pi \models^j \phi \end{split}$$

LTL Equivalences 1

$$\phi \equiv \psi \quad \doteq \quad \forall \mathcal{M}. \ \forall \pi \in \mathcal{M}. \ \pi \models^{\mathbf{0}} \phi \iff \pi \models^{\mathbf{0}} \psi$$

Elimination of implication

$$(\phi \Rightarrow \psi) \equiv \neg \phi \lor \psi \qquad \neg (\phi \Rightarrow \psi) \equiv \phi \land \neg \psi$$

Dualities in Propositional Logic

$$\neg(\phi \land \psi) \equiv \neg\phi \lor \neg\psi \qquad \neg(\phi \lor \psi) \equiv \neg\phi \land \neg\psi$$

LTL Equivalences 2

Dualities in LTL

$$\neg \mathbf{X} \phi \equiv \mathbf{X} \neg \phi \quad \neg \mathbf{G} \phi \equiv \mathbf{F} \neg \phi \quad \neg \mathbf{F} \phi \equiv \mathbf{G} \neg \phi$$
$$\neg (\phi \mathbf{U} \psi) \equiv \neg \phi \mathbf{R} \neg \psi \quad \neg (\phi \mathbf{R} \psi) \equiv \neg \phi \mathbf{U} \neg \psi$$

Inter-definitions

$$\mathbf{F}\phi \equiv \neg \mathbf{G}\neg\phi \qquad \mathbf{G}\phi \equiv \neg \mathbf{F}\neg\phi$$
$$\mathbf{F}\phi \equiv \top \mathbf{U}\phi \qquad \mathbf{G}\phi \equiv \bot \mathbf{R}\phi$$

Distributive laws

$$\mathbf{G}(\phi \wedge \psi) \equiv \mathbf{G}\phi \wedge \mathbf{G}\psi \qquad \mathbf{F}(\phi \vee \psi) \equiv \mathbf{F}\phi \vee \mathbf{F}\psi$$

LTL Equivalences 3

Idempotency

$$\mathbf{F}\,\mathbf{F}\,\phi \ \equiv \ \mathbf{F}\,\phi \qquad \mathbf{G}\,\mathbf{G}\,\phi \ \equiv \ \mathbf{G}\,\phi$$

Weak and strong Until

$$\phi \, \mathbf{U} \, \psi \ \equiv \ \phi \, \mathbf{W} \, \psi \wedge \mathbf{F} \, \psi \qquad \phi \, \mathbf{W} \, \psi \ \equiv \ \phi \, \mathbf{U} \, \psi \vee \mathbf{G} \, \phi$$

Some more suprising equivalences

$$\mathbf{G} \mathbf{F} \mathbf{G} \phi \equiv \mathbf{F} \mathbf{G} \phi \qquad \mathbf{F} \mathbf{G} \mathbf{F} \phi \equiv \mathbf{G} \mathbf{F} \phi$$
$$\mathbf{G} (\mathbf{F} \phi \lor \mathbf{F} \psi) \equiv \mathbf{G} \mathbf{F} \phi \lor \mathbf{G} \mathbf{F} \psi$$

Past-time LTL Operators

$$\pi \models^{i} \mathbf{Y} \phi \quad \text{iff} \quad i > 0 \text{ and } \pi \models^{i-1} \phi$$
$$\pi \models^{i} \mathbf{Z} \phi \quad \text{iff} \quad i = 0 \text{ or } \pi \models^{i-1} \phi$$
$$\pi \models^{i} \mathbf{F}^{-} \phi \quad \text{iff} \quad \exists j \in \{0..i\}. \ \pi \models^{j} \phi$$
$$\pi \models^{i} \mathbf{G}^{-} \phi \quad \text{iff} \quad \forall j \in \{0..i\}. \ \pi \models^{j} \phi$$

Interval LTL Operators

$$\pi \models^{i} \mathbf{F}_{[a,b]} \phi \quad \text{iff} \quad \exists j \in \{i + a \dots i + b\}. \ \pi \models^{j} \phi$$
$$\pi \models^{i} \mathbf{G}_{[a,b]} \phi \quad \text{iff} \quad \forall j \in \{i + a \dots i + b\}. \ \pi \models^{j} \phi$$

where $a, b \in \mathbb{N}$

PSL – Property Specification Language

© Dana Fisman, CC BY-SA 4.0 licence

Extends expressive power of LTL to that of omega-regular languages

SystemVerilog Assertions are similar.