CTL – Computation Tree Logic a Logic for Branching-time Model Checking¹

> Paul Jackson Paul.Jackson@ed.ac.uk

University of Edinburgh

Formal Verification Autumn 2023

¹Including contributions by Jacques Fleuriot, Bob Atkey and Elizabeth Polgreen

CTL Syntax

Assume some set Atom of atomic propositions

$$\begin{array}{ll} \phi, \psi ::= & p \mid \neg \phi \mid \phi \land \psi \mid \phi \lor \psi \mid \phi \Rightarrow \psi \mid \\ & \mathsf{AX} \phi \mid \mathsf{EX} \phi \mid \mathsf{AF} \phi \mid \mathsf{EF} \phi \mid \mathsf{AG} \phi \mid \mathsf{EG} \phi \mid \\ & \mathsf{A}[\phi \: \mathsf{U} \: \psi] \mid \mathsf{E}[\phi \: \mathsf{U} \: \psi] \end{array}$$

where $p \in Atom$

Each temporal connective is a pair of a path quantifier

 \mathbf{A} — for all paths

E — there exists a path

and an LTL-like temporal operator ${\bm X}$, ${\bm G}$, ${\bm F}$ or $~{\bm U}$

```
Precedence high-to-low:
(AX, EX, AF, EF, AG, EG, \neg),
(\land, \lor),
\Rightarrow
```

CTL Semantics 1: Transition Systems and Paths

(This is the same as for LTL)

Definition (Transition System) A transition system $\mathcal{M} = \langle S, \rightarrow, L, I \rangle$ consists of

such that $\forall s. \exists t. s \rightarrow t.$

Definition (Path)

A path π in a model $\mathcal{M} = \langle S, \rightarrow, L, I \rangle$ is an infinite sequence of states s_0, s_1, \ldots such that $s_0 \in I$ and $\forall i \ge 0$. $s_i \rightarrow s_{i+1}$.

CTL Semantics 2: Satisfaction relation

Satisfaction relation $\mathcal{M}, s \models \phi$ read as *"state s in model M satisfies CTL formula* ϕ ". The \mathcal{M} is often implicit.

$$\begin{split} s &\models \top \\ s &\not\models \bot \\ s &\models p & \text{iff} \quad p \in \mathcal{L}(s) \\ s &\models \neg \phi & \text{iff} \quad s \not\models \phi \\ s &\models \phi_1 \land \phi_2 & \text{iff} \quad s &\models \phi_1 \text{ and } s &\models \phi_2 \\ s &\models \phi_1 \lor \phi_2 & \text{iff} \quad s &\models \phi_1 \text{ or } s &\models \phi_2 \\ s &\models \phi_1 \Rightarrow \phi_2 & \text{iff} \quad s &\models \phi_1 \text{ implies } s &\models \phi_2 \end{split}$$

CTL Semantics 3: Satisfaction relation (continued)

- $s \models \mathsf{AX} \phi$ iff $\forall s'. s \rightarrow s'$ implies $s' \models \phi$
- $s \models \mathsf{EX} \phi$ iff $\exists s'. s \to s' \text{ and } s' \models \phi$
- $s \models \mathbf{AG} \phi$ iff \forall paths π s.t. $s_0 = s$. $\forall i. s_i \models \phi$
- $s \models \mathbf{EG} \phi$ iff \exists path π s.t. $s_0 = s$. $\forall i. s_i \models \phi$
- $s \models \mathbf{AF} \phi$ iff \forall paths π s.t. $s_0 = s$. $\exists i. s_i \models \phi$
- $s \models \mathbf{EF} \phi$ iff \exists path π s.t. $s_0 = s$. $\exists i. s_i \models \phi$

$$\begin{split} s \models \mathbf{A}[\phi_1 \ \mathbf{U} \ \phi_2] & \text{iff} \quad \forall \text{ paths } \pi \text{ s.t. } s_0 = s. \\ \exists i. \ s_i \models \phi_2 \text{ and } \forall j < i. \ s_j \models \phi_1 \end{split}$$

$$\begin{split} s \models \mathbf{E}[\phi_1 \ \mathbf{U} \ \phi_2] & \text{iff} \quad \exists \text{ path } \pi \text{ s.t. } s_0 = s. \\ \exists i. \ s_i \models \phi_2 \text{ and } \forall j < i. \ s_j \models \phi_1 \end{split}$$

For *every* next state, ϕ holds.

There *exists* a next state where ϕ holds.

For all paths, there exists a future state where ϕ holds.

There exists a path with a future state where ϕ holds.

For all paths, for all states along them, ϕ holds.

There exists a path such that, for all states along it, ϕ holds.

 $\mathsf{A}[\phi \cup \psi]$

For all paths, ψ eventually holds, and ϕ holds at all states earlier.

 $\mathsf{E}[\phi ~\mathsf{U} ~\psi]$

Exists path where ψ eventually holds, and ϕ holds at all states earlier.

CTL Examples

► EF *p*

There exists a path along which p eventually holds

AG AF p

In all future states, it is always the case that p eventually holds

$\blacktriangleright \mathbf{AG} (p \Rightarrow \mathbf{AF} q)$

In all future states, if p holds then always eventually q holds

CTL Examples (continued)

 $\blacktriangleright \mathsf{AG}(p \Rightarrow \mathsf{E}[p \mathsf{U} q])$

In all future states, if p holds then there exists a path onwards along which p continues to hold until q holds

 $\blacktriangleright \mathbf{AG} (p \Rightarrow \mathbf{EG} q)$

In all future states, if p holds then there exists a path onwards along which p holds forever

EF AG p

There exists some future state from which p always holds along all paths

CTL Equivalences

de-Morgan dualities for the temporal connectives

$$\neg \mathbf{EX} \phi \equiv \mathbf{AX} \neg \phi$$

$$\neg \mathbf{EF} \phi \equiv \mathbf{AG} \neg \phi$$

$$\neg \mathbf{EG} \phi \equiv \mathbf{AF} \neg \phi$$

$$\neg \mathbf{EX} \phi \equiv \mathbf{AX} \neg \phi$$

Also have

$$\begin{array}{lll} \mathbf{AF} \phi & \equiv & \mathbf{A}[\top \ \mathbf{U} \ \phi] \\ \mathbf{EF} \phi & \equiv & \mathbf{E}[\top \ \mathbf{U} \ \phi] \\ \mathbf{A}[\phi_1 \ \mathbf{U} \ \phi_2] & \equiv & \neg (\mathbf{E}[\neg \phi_2 \ \mathbf{U} \ (\neg \phi_1 \land \neg \phi_2)] \lor \mathbf{EG} \ \neg \phi_2) \end{array}$$

From these one can show that sets $\{AU, EU, EX\}$ and $\{EG, EU, EX\}$ are both adequate sets of temporal connectives.

Differences between LTL and CTL

- LTL allows for questions of form
 - For all paths, does LTL property ϕ hold?
 - Does there exist a path on which LTL property φ holds? (Ask whether ¬φ holds on all paths and look for a counter-example)
- CTL allows mixing of path quantifiers

• AG $(p \Rightarrow EG q)$

- Some path properties are impossible to express in CTL.
 - $\blacktriangleright \text{ In LTL: } \mathbf{GF} p \Rightarrow \mathbf{GF} q$
 - In CTL: **AG AF** $p \Rightarrow$ **AG AF** q

is not the same.

(Consider a model in which p holds infinitely often on some paths, but not all, and q holds nowhere)

• Core issue: \Rightarrow in CTL cannot be used to restrict paths

- Exist Fair CTL refinements of CTL that address this issue to some extent
 - E.g. path quantifiers can be restricted to consider only paths on which given properties hold infinitely often.

Fairness

- Key in modelling concurrent systems
- Concurrency handled using Interleaving:

$$egin{array}{rcl} (s_1,s_2) \longrightarrow (s_1',s_2') &\doteq (s_1 \longrightarrow_1 s_1' \wedge s_2 = s_2') \lor \ (s_1 = s_1' \wedge s_2 \longrightarrow_2 s_2') \end{array}$$

 $\mathsf{Fair} \Rightarrow \phi$

where

$$\mathsf{Fair} \;=\; (\textbf{G}\,\textbf{F}\,\mathsf{taken}_1) \land (\textbf{G}\,\textbf{F}\,\mathsf{taken}_2)$$

and taken $_i$ holds at a state of a path if process i takes a step from that state to the next state.

Further difference between LTL and CTL

The LTL formula

F G *p*

and the CTL formula

AF AG p

are not the same.

Exercise: give a model which satisfies one of the formulas but not the other.

CTL*

Extends both LTL and CTL

State formulas, evaluated in states:

$$\phi ::= \begin{array}{c} p \mid \neg \phi \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \Rightarrow \phi \mid \\ \mathbf{A}[\alpha] \mid \mathbf{E}[\alpha] \end{array}$$

Path formulas, evaluated along paths:

$$\begin{array}{ll} \alpha ::= & \phi \mid \neg \alpha \mid \alpha \land \alpha \mid \alpha \lor \alpha \mid \alpha \Rightarrow \alpha \mid \\ & \mathbf{X} \alpha \mid \mathbf{F} \alpha \mid \mathbf{G} \alpha \mid \alpha \mathbf{U} \alpha \end{array}$$

• An LTL formula α is expressed as $\mathbf{A}[\alpha]$ in CTL*

Harder to model check

Further Reading

- M.Y. Vardi, Branching vs. Linear Time: Final Showdown. Tools and Algorithms for the Construction and Analysis of Systems, LNCS vol. 2031, pp 1-22, 2001
- Michael Huth and Mark Ryan. Modelling and Reasoning about Systems, 2nd Edition, 2004. Sections 3.4 and 3.5.