
CTL – Computation Tree Logic
a Logic for Branching-time Model Checking1

Paul Jackson
Paul.Jackson@ed.ac.uk

University of Edinburgh

Formal Verification
Autumn 2023

1Including contributions by Jacques Fleuriot, Bob Atkey and Elizabeth
Polgreen

1 / 21

CTL Syntax

Assume some set Atom of atomic propositions

φ, ψ ::= p | ¬φ | φ ∧ ψ | φ ∨ ψ | φ⇒ ψ |
AXφ | EXφ | AFφ | EFφ | AGφ | EGφ |
A[φU ψ] | E[φU ψ]

where p ∈ Atom

Each temporal connective is a pair of a path quantifier

A — for all paths

E — there exists a path

and an LTL-like temporal operator X , G , F or U

Precedence high-to-low:
(AX , EX , AF , EF , AG , EG , ¬),
(∧, ∨),
⇒

2 / 21

CTL Semantics 1: Transition Systems and Paths

(This is the same as for LTL)

Definition (Transition System)

A transition system M = 〈S ,→, L, I 〉 consists of

S set of states
→ ⊆ S × S transition relation
L : S → P(Atom) labelling function
I ⊆ S set of initial states (sometimes)

such that ∀s.∃t. s → t.

Definition (Path)

A path π in a model M = 〈S ,→, L, I 〉 is an infinite sequence of
states s0, s1, . . . such that s0 ∈ I and ∀i ≥ 0. si → si+1.

3 / 21

CTL Semantics 2: Satisfaction relation

Satisfaction relation M, s |= φ read as

“state s in model M satisfies CTL formula φ”.

The M is often implicit.

s |= >
s 6|= ⊥
s |= p iff p ∈ L(s)

s |= ¬φ iff s 6|= φ
s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2

s |= φ1 ∨ φ2 iff s |= φ1 or s |= φ2

s |= φ1 ⇒ φ2 iff s |= φ1 implies s |= φ2

4 / 21

CTL Semantics 3: Satisfaction relation (continued)

s |= AXφ iff ∀ s ′. s → s ′ implies s ′ |= φ

s |= EXφ iff ∃ s ′. s → s ′ and s ′ |= φ

s |= AGφ iff ∀ paths π s.t. s0 = s. ∀i . si |= φ

s |= EGφ iff ∃ path π s.t. s0 = s. ∀i . si |= φ

s |= AFφ iff ∀ paths π s.t. s0 = s. ∃i . si |= φ

s |= EFφ iff ∃ path π s.t. s0 = s. ∃i . si |= φ

s |= A[φ1 U φ2] iff ∀ paths π s.t. s0 = s.
∃i . si |= φ2 and ∀j < i . sj |= φ1

s |= E[φ1 U φ2] iff ∃ path π s.t. s0 = s.
∃i . si |= φ2 and ∀j < i . sj |= φ1

5 / 21

CTL in Pictures

AX φ

For every next state, φ holds.

6 / 21

CTL in Pictures

EX φ

There exists a next state where φ holds.

7 / 21

CTL in Pictures

AF φ

For all paths, there exists a future state where φ holds.

8 / 21

CTL in Pictures

EF φ

There exists a path with a future state where φ holds.

9 / 21

CTL in Pictures

AG φ

For all paths, for all states along them, φ holds.

10 / 21

CTL in Pictures

EG φ

There exists a path such that, for all states along it, φ holds.

11 / 21

CTL in Pictures

A[φ U ψ]

For all paths, ψ eventually holds, and φ holds at all states earlier.

12 / 21

CTL in Pictures

E[φ U ψ]

Exists path where ψ eventually holds, and φ holds at all states
earlier.

13 / 21

CTL Examples

I EF p
There exists a path along which p eventually holds

I AGAF p
In all future states, it is always the case that p eventually holds

I AG (p ⇒ AF q)
In all future states, if p holds then always eventually q holds

14 / 21

CTL Examples (continued)

I AG (p ⇒ E[p U q])
In all future states, if p holds then there exists a path onwards
along which p continues to hold until q holds

I AG (p ⇒ EG q)
In all future states, if p holds then there exists a path onwards
along which p holds forever

I EFAG p
There exists some future state from which p always holds
along all paths

15 / 21

CTL Equivalences

de-Morgan dualities for the temporal connectives

¬EXφ ≡ AX¬φ
¬EFφ ≡ AG¬φ
¬EGφ ≡ AF¬φ
¬EXφ ≡ AX¬φ

Also have

AFφ ≡ A[>U φ]
EFφ ≡ E[>U φ]
A[φ1 U φ2] ≡ ¬(E[¬φ2 U (¬φ1 ∧ ¬φ2)] ∨ EG¬φ2)

From these one can show that sets {AU,EU,EX} and
{EG,EU,EX} are both adequate sets of temporal connectives.

16 / 21

Differences between LTL and CTL
I LTL allows for questions of form

I For all paths, does LTL property φ hold?
I Does there exist a path on which LTL property φ holds?

(Ask whether ¬φ holds on all paths and look for a
counter-example)

I CTL allows mixing of path quantifiers
I AG (p ⇒ EG q)

I Some path properties are impossible to express in CTL.
I In LTL: GF p ⇒ GF q
I In CTL: AGAF p ⇒ AGAF q

is not the same.
(Consider a model in which p holds infinitely often on some
paths, but not all, and q holds nowhere)

I Core issue: ⇒ in CTL cannot be used to restrict paths

I Exist Fair CTL refinements of CTL that address this issue to
some extent
I E.g. path quantifiers can be restricted to consider only paths

on which given properties hold infinitely often.

17 / 21

Fairness

I Key in modelling concurrent systems

I Concurrency handled using Interleaving:

(s1, s2) −→ (s ′1, s
′
2)

.
= (s1 −→1 s

′
1 ∧ s2 = s ′2) ∨

(s1 = s ′1 ∧ s2 −→2 s
′
2)

I But want to avoid considering paths in which only one process
ever runs

I E.g. in LTL prove properties of form

Fair⇒ φ

where
Fair = (GF taken1) ∧ (GF taken2)

and takeni holds at a state of a path if process i takes a step
from that state to the next state.

18 / 21

Further difference between LTL and CTL

The LTL formula
FG p

and the CTL formula
AFAG p

are not the same.

Exercise: give a model which satisfies one of the formulas but not
the other.

19 / 21

CTL*

I Extends both LTL and CTL

I State formulas, evaluated in states:

φ ::= p | ¬φ | φ ∧ φ | φ ∨ φ | φ⇒ φ |
A[α] | E[α]

I Path formulas, evaluated along paths:

α ::= φ | ¬α | α ∧ α | α ∨ α | α⇒ α |
Xα | Fα | Gα | αU α

I An LTL formula α is expressed as A[α] in CTL*

I Harder to model check

20 / 21

Further Reading

I M.Y. Vardi, Branching vs. Linear Time: Final Showdown.
Tools and Algorithms for the Construction and Analysis of
Systems, LNCS vol. 2031, pp 1-22, 2001

I Michael Huth and Mark Ryan. Modelling and Reasoning
about Systems, 2nd Edition, 2004. Sections 3.4 and 3.5.

21 / 21

	Section 1 Title

