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CTL Syntax

Assume some set Atom of atomic propositions

o= pl=gp|onY oV | o=
AX¢ |EX¢ | AF¢ |EF¢ | AG¢ | EG¢ |
Alp Uy | E[¢p U]

where p € Atom

Each temporal connective is a pair of a path quantifier
A — for all paths
E — there exists a path

and an LTL-like temporal operator X, G, For U

Precedence high-to-low:

(AX, EX, AF, EF, AG, EG, ),
(A V),

=
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CTL Semantics 1: Transition Systems and Paths
(This is the same as for LTL)

Definition (Transition System)
A transition system M = (S, —, L, I) consists of

S set of states

- C S5xS transition relation

L S — P(Atom) labelling function

/I C S set of initial states (sometimes)

such that Vs.dt. s — t.
Definition (Path)
A path 7 in a model M = (S, —, L, ) is an infinite sequence of

states sp, S1, ... such that sp € [ and Vi > 0. s; — sj41.
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CTL Semantics 2: Satisfaction relation

Satisfaction relation M, s = ¢ read as
“state s in model M satisfies CTL formula ¢".

The M is often implicit.

sET
s L
skEp

s ¢
Sk ¢1 A P2

skE o1V ¢
sk o1 = ¢

iff
iff
iff
iff
iff

p € L(s)

SE¢
skE¢1and s = ¢

skE¢Lors =
s = ¢1 implies s |= ¢
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CTL Semantics 3: Satisfaction relation (continued)

s = AX ¢
sEEX¢
sEAG¢
sE=EG¢
s = AF ¢
sEEFs
s = Alo1 U o]

s = E[¢1 U @]

iff
iff
iff
iff
iff
iff
iff

iff

Vs s— s impliess' | ¢
ds.s—>s ands o

V paths 7 s.t. sp =s. Vi. s = ¢
3 path 7 s.t. sp =s. Vi. s; = ¢
V paths 7 s.t. sp =s. Ji. s = ¢
Jpath msit. sp=s. Ji. s; = ¢

V paths 7 s.t. s5 = s.

di. s; ): ¢ and Vj < i. Sj ): 1
d path 7 s.t. s = s.

di. s; ): ¢ and Vj < i. Sj ): 1
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CTL in Pictures

AX ¢

For every next state, ¢ holds.
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CTL in Pictures

EX ¢

There exists a next state where ¢ holds.
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CTL in Pictures

AF ¢

For all paths, there exists a future state where ¢ holds.
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CTL in Pictures

EF ¢

There exists a path with a future state where ¢ holds.
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CTL in Pictures

AG ¢

For all paths, for all states along them, ¢ holds.
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CTL in Pictures

EG ¢

There exists a path such that, for all states along it, ¢ holds.
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CTL in Pictures

Alo U ¢]

For all paths, v eventually holds, and ¢ holds at all states earlier.

12/21



CTL in Pictures

E[¢ U v

Exists path where ¢ eventually holds, and ¢ holds at all states
earlier.
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CTL Examples

> EFp
There exists a path along which p eventually holds

» AGAFp
In all future states, it is always the case that p eventually holds

» AG(p = AFgq)
In all future states, if p holds then always eventually q holds
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CTL Examples (continued)

> AG(p = E[pUd])
In all future states, if p holds then there exists a path onwards
along which p continues to hold until q holds

> AG(p = EGg)
In all future states, if p holds then there exists a path onwards
along which p holds forever

> EFAGp
There exists some future state from which p always holds
along all paths
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CTL Equivalences

de-Morgan dualities for the temporal connectives

“EX¢$ = AX—d
“EF¢ = AG—¢
“EG¢ = AF—¢
“EX¢ = AX ¢
Also have
AF ¢ = A[T U]
EF ¢ = E[T U qb]
Alp1Udo] = —(E[-d2 U (—¢1 A —¢2)] V EG —¢»)

From these one can show that sets {AU, EU, EX} and
{EG, EU,EX} are both adequate sets of temporal connectives.
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Differences between LTL and CTL

> LTL allows for questions of form

» For all paths, does LTL property ¢ hold?

» Does there exist a path on which LTL property ¢ holds?
(Ask whether —=¢ holds on all paths and look for a
counter-example)

» CTL allows mixing of path quantifiers

> AG(p= EGg)

» Some path properties are impossible to express in CTL.

» InLTL: GFp=GFgq

» In CTL: AGAFp = AGAFgq
is not the same.

(Consider a model in which p holds infinitely often on some
paths, but not all, and g holds nowhere)

» Core issue: = in CTL cannot be used to restrict paths

» Exist Fair CTL refinements of CTL that address this issue to
some extent

» E.g. path quantifiers can be restricted to consider only paths
on which given properties hold infinitely often.
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Fairness

> Key in modelling concurrent systems

» Concurrency handled using Interleaving:
(s1,9) — (s1,8) = (1 —1s51A2=5)V
(s1 =5s] Asp —>2 sh)

» But want to avoid considering paths in which only one process
ever runs

» E.g. in LTL prove properties of form
Fair = ¢

where
Fair = (GFtakeni) A (GF takeny)

and taken; holds at a state of a path if process i takes a step
from that state to the next state.
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Further difference between LTL and CTL

The LTL formula
FGp

and the CTL formula
AFAGp

are not the same.

Exercise: give a model which satisfies one of the formulas but not
the other.
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CTL*

v

Extends both LTL and CTL

State formulas, evaluated in states:

pu= plo|oN¢|oVe|o=9|
Alo] | E[o]

v

» Path formulas, evaluated along paths:

an= ¢|-a|laNa|laVala=al
Xa|Fa|Ga|aUa

\4

An LTL formula « is expressed as A[a] in CTL*

Harder to model check

v
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Further Reading

» M.Y. Vardi, Branching vs. Linear Time: Final Showdown.
Tools and Algorithms for the Construction and Analysis of
Systems, LNCS vol. 2031, pp 1-22, 2001

» Michael Huth and Mark Ryan. Modelling and Reasoning
about Systems, 2nd Edition, 2004. Sections 3.4 and 3.5.
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