
CTL Model Checking

Paul Jackson
Paul.Jackson@ed.ac.uk

University of Edinburgh

Formal Verification
Autumn 2023

1 / 12

CTL satisfaction using formula denotations

I In CTL model checking we ask the question: does

M, s |= φ

hold for all initial states S0?

I CTL model checking algorithms usually fix M = 〈S ,→, L〉
and φ and compute

[[φ]]M = {s ∈ S |M, s |= φ}

“The denotation of φ in model M”

I The CTL model checking question now becomes:

S0 ⊆ [[φ]]M ?

I Often M is implicit and we write [[φ]] rather than [[φ]]M

2 / 12

Denotational semantics for CTL

Instead of defining [[φ]] in terms of |= φ, we can define it directly –
recursively on the structure of φ

[[>]] = S

[[⊥]] = ∅
[[p]] = {s ∈ S | p ∈ L(s)}
[[¬φ]] = S − [[φ]]

[[φ ∧ ψ]] = [[φ]] ∩ [[ψ]]

[[φ ∨ ψ]] = [[φ]] ∪ [[ψ]]

Since [[φ]] is always a finite set, these are computable

3 / 12

Denotational semantics for CTL: temporal connectives

[[EXφ]] = pre∃([[φ]])

[[AXφ]] = pre∀([[φ]])

where

pre∃(Y)
.

= {s ∈ S | ∃s ′ ∈ S . s → s ′ ∧ s ′ ∈ Y }
pre∀(Y)

.
= {s ∈ S | ∀s ′ ∈ S . s → s ′ ⇒ s ′ ∈ Y }

These are computable.

But what about the rest? E.g.

[[EFφ]] = {s ∈ S | ∃ path π s.t. s0 = s. ∃i . si |= φ}

does not suggest how to compute [[EFφ]]

4 / 12

Approximating [[EFφ]]
Define

EF0 φ = ⊥
EFi+1 φ = φ ∨ EXEFi φ

Then
EF1 φ = φ
EF2 φ = φ ∨ EXφ
EF3 φ = φ ∨ EX (φ ∨ EXφ)
. . .

s ∈ [[EFi φ]] if there exists a finite path i states long starting from
s such that φ holds at some point on the path.

Fix a model M and let n = |S |. If there is a finite path with k > n
states on which φ holds somewhere, then there also is a finite path
of n states or fewer where φ holds somewhere. (Proof: if φ occurs
at position ≥ n, repeatedly cut out segments between repeated
states)

Therefore, for all k > n, [[EFk φ]] = [[EFn φ]]
5 / 12

Computing [[EFφ]]
By a similar argument

[[EFφ]] = [[EFn φ]]

Consider [[EFn]] when the definition of EFn is expanded:

[[EF0 φ]] = ∅
[[EFi+1 φ]] = [[φ]] ∪ pre∃([[EFi φ]])

We have here a way of computing [[EFφ]].

In general, we can stop computing the recurrence as soon as we
find

[[EF k+1φ]] = [[EFk φ]]

for k ≤ n.

For efficient computation k << n is desirable. 6 / 12

Approximating [[EGφ]]
Define

EG0 φ = >
EGi+1 φ = φ ∧ EXEGi φ

Then
EG1 φ = φ
EG2 φ = φ ∧ EXφ
EG3 φ = φ ∧ EX (φ ∧ EXφ)
. . .

s ∈ [[EGi φ]] if there exists a finite path i states long starting from
s such that φ holds at every point on the path.

One can show ∀k > n. [[EGk φ]] = [[EGn φ]] = [[EGφ]] (exercise)
and so we can compute [[EGφ]] using

[[EG0 φ]] = S

[[EGi+1 φ]] = [[φ]] ∩ pre∃([[EGi φ]])

7 / 12

Fixed-point theory

What is happening here is that we are computing fixed-points.

A set X ⊆ S is a fixed point of a function F ∈ P(S)→ P(S) iff
F (X) = X .

We have that

[[EFn φ]] = [[EFn+1 φ]]
= [[φ ∨ EXEFn φ]]
= [[φ]] ∪ pre∃([[EFn φ]])

so [[EFn φ]] is a fixed point of

F (Y)
.

= [[φ]] ∪ pre∃(Y) .

Also [[EFφ]] is a fixed-point of F , since [[EFn φ]] = [[EFφ]].

More specifically, [[EFn φ]] and [[EFφ]] are the least fixed point of F

8 / 12

Fixed-point theorem
A function F ∈ P(S)→ P(S) is monotone iff
X ⊆ Y implies F (X) ⊆ F (Y) of S .

Let F i (X) = F (F i−1(X)) for i > 0 and F 0(X) = X .

Given a collection of sets C ⊆ P(S), a set X ∈ C is
I the least element of C iff ∀Y ∈ C . X ⊆ Y ,
I the greatest element of C iff ∀Y ∈ C . X ⊇ Y .

Knaster-Tarski Theorem (special case)
Let S be a set with n elements and F ∈ P(S)→ P(S) be a
monotone function. Then
I F n(∅) is the least fixed point of F , and
I F n(S) is the greatest fixed point of F

Proof: See p241 H&R

This theorem justifies F n(∅) and F n(S) being fixed points of F
without the need, as before, to appeal to further details about F

9 / 12

Denotational semantics of temporal connectives

When F ∈ P(S)→ P(S) is a monotone function, let us write

I µY . F (Y) for the least fixed point of F , and

I νY . F (Y) for the greatest fixed point of F .

With this notation, we can make the definitions

[[EFφ]] = µY .[[φ]] ∪ pre∃(Y)

[[EGφ]] = νY .[[φ]] ∩ pre∃(Y)

[[AFφ]] = µY .[[φ]] ∪ pre∀(Y)

[[AGφ]] = νY .[[φ]] ∩ pre∀(Y)

[[E[φU ψ]]] = µY . [[ψ]] ∪ ([[φ]] ∩ pre∃(Y))

[[A[φU ψ]]] = µY . [[ψ]] ∪ ([[φ]] ∩ pre∀(Y))

In every case the F (Y) is monotone, so the Knaster-Tarski
theorem assures us the fixed point exists and can be computed.

10 / 12

Further CTL Equivalences

The fixed-point characterisations of the CTL temporal operators
justify the CTL equivalences

EFφ ≡ φ ∨ EXEFφ

EGφ ≡ φ ∧ EXEGφ

AFφ ≡ φ ∨ AXAFφ

AGφ ≡ φ ∧ AXEGφ

E[φU ψ] ≡ ψ ∨ (φ ∧ EXE[φU ψ])

A[φU ψ] ≡ ψ ∨ (φ ∧ AXA[φU ψ])

11 / 12

Fair CTL model checking
A fair version EψGφ of EGφ holds in a state s if there exists a
path from s such that

1. φ holds in every state of the path, and

2. ψ holds infinitely often along the path.

We can define it using a greatest fixed-point operator ν

EψGφ = νZ . φ ∧ EXE[φU (ψ ∧ Z)]

How do we compute it?

I Its definition has nested fixed-points as there is a µ least
fixed-point operator in the E[U] definition

I In each iteration of the computation of the ν fixed-point, we
have to complete a full set of iterations of the µ fixed-point
computation.

Fair CTL model checking is useful both because of the extra
expressivity it brings to CTL and because LTL model checking can
be reduced to it.

12 / 12

	Section 1 Title

