CTL Model Checking

Paul Jackson Paul.Jackson@ed.ac.uk

University of Edinburgh

Formal Verification Autumn 2023

CTL satisfaction using formula denotations

▶ In CTL model checking we ask the question: does

 $\mathcal{M}, \mathbf{s} \models \phi$

hold for all initial states S_0 ?

▶ CTL model checking algorithms usually fix $M = \langle S, \rightarrow, L \rangle$ and ϕ and compute

$$\llbracket \phi \rrbracket_{\mathcal{M}} = \{ s \in S \, | \, \mathcal{M}, s \models \phi \}$$

"The denotation of ϕ in model \mathcal{M} "

The CTL model checking question now becomes:

$$S_0 \subseteq \llbracket \phi \rrbracket_{\mathcal{M}}$$
 ?

▶ Often *M* is implicit and we write [[φ]] rather than [[φ]]_M

Denotational semantics for CTL

Instead of defining $[\![\phi]\!]$ in terms of $\models \phi$, we can define it directly – recursively on the structure of ϕ

$$\begin{bmatrix} \top \end{bmatrix} = S$$
$$\begin{bmatrix} \bot \end{bmatrix} = \emptyset$$
$$\begin{bmatrix} p \end{bmatrix} = \{s \in S \mid p \in L(s)\}$$
$$\begin{bmatrix} \neg \phi \end{bmatrix} = S - \llbracket \phi \end{bmatrix}$$
$$\begin{bmatrix} \phi \land \psi \end{bmatrix} = \llbracket \phi \rrbracket \cap \llbracket \psi \rrbracket$$
$$\begin{bmatrix} \phi \lor \psi \end{bmatrix} = \llbracket \phi \rrbracket \cup \llbracket \psi \rrbracket$$

Since $\llbracket \phi \rrbracket$ is always a finite set, these are computable

Denotational semantics for CTL: temporal connectives

$$\llbracket \left[\mathsf{EX} \phi
brace
ight] = \mathsf{pre}_{\exists} (\llbracket \phi
brace
brace)$$

 $\llbracket \mathsf{AX} \phi
brace = \mathsf{pre}_{orall} (\llbracket \phi
brace)$

where

$$pre_{\exists}(Y) \doteq \{s \in S \mid \exists s' \in S. s \to s' \land s' \in Y\}$$
$$pre_{\forall}(Y) \doteq \{s \in S \mid \forall s' \in S. s \to s' \Rightarrow s' \in Y\}$$

These are computable.

But what about the rest? E.g.

$$\llbracket \mathsf{EF} \phi \rrbracket = \{ s \in S \mid \exists \text{ path } \pi \text{ s.t. } s_0 = s. \exists i. s_i \models \phi \}$$

does not suggest how to compute $[\![\mathbf{EF} \, \phi]\!]$

Approximating $\llbracket \mathbf{EF} \phi \rrbracket$

Define

Then

$$\begin{aligned} \mathbf{EF}_1 \phi &= \phi \\ \mathbf{EF}_2 \phi &= \phi \lor \mathbf{EX} \phi \\ \mathbf{EF}_3 \phi &= \phi \lor \mathbf{EX} (\phi \lor \mathbf{EX} \phi) \end{aligned}$$

 $s \in \llbracket \mathbf{EF}_i \phi \rrbracket$ if there exists a finite path *i* states long starting from *s* such that ϕ holds at some point on the path.

Fix a model \mathcal{M} and let n = |S|. If there is a finite path with k > n states on which ϕ holds somewhere, then there also is a finite path of n states or fewer where ϕ holds somewhere. (*Proof: if* ϕ occurs at position $\geq n$, repeatedly cut out segments between repeated states)

Therefore, for all k > n, $\llbracket \mathbf{EF}_k \phi \rrbracket = \llbracket \mathbf{EF}_n \phi \rrbracket$

. . .

Computing **[EF** ϕ]

By a similar argument

$\llbracket \mathsf{EF} \, \phi \rrbracket = \llbracket \mathsf{EF}_n \, \phi \rrbracket$

Consider $[EF_n]$ when the definition of EF_n is expanded:

$$\llbracket \mathsf{E} \mathsf{F}_0 \phi \rrbracket = \emptyset$$

$$\llbracket \mathsf{E} \mathsf{F}_{i+1} \phi \rrbracket = \llbracket \phi \rrbracket \cup \mathsf{pre}_{\exists} (\llbracket \mathsf{E} \mathsf{F}_i \phi \rrbracket)$$

We have here a way of computing $\llbracket \mathbf{EF} \phi \rrbracket$.

In general, we can stop computing the recurrence as soon as we find

$$\llbracket \mathsf{EF}_{k+1}\phi \rrbracket = \llbracket \mathsf{EF}_k \phi \rrbracket$$

for $k \leq n$.

For efficient computation $k \ll n$ is desirable.

Approximating $\llbracket \mathbf{EG} \, \phi \rrbracket$

. . .

Define

Then

$$\mathbf{EG}_{1} \phi = \phi
 \mathbf{EG}_{2} \phi = \phi \land \mathbf{EX} \phi
 \mathbf{EG}_{3} \phi = \phi \land \mathbf{EX} (\phi \land \mathbf{EX} \phi)$$

 $s \in \llbracket \mathbf{EG}_i \phi \rrbracket$ if there exists a finite path *i* states long starting from *s* such that ϕ holds at every point on the path.

One can show $\forall k > n$. $\llbracket \mathbf{EG}_k \phi \rrbracket = \llbracket \mathbf{EG}_n \phi \rrbracket = \llbracket \mathbf{EG} \phi \rrbracket$ (exercise) and so we can compute $\llbracket \mathbf{EG} \phi \rrbracket$ using

$$\llbracket \mathbf{E} \mathbf{G}_0 \phi \rrbracket = S$$

$$\llbracket \mathbf{E} \mathbf{G}_{i+1} \phi \rrbracket = \llbracket \phi \rrbracket \cap \mathsf{pre}_{\exists} (\llbracket \mathbf{E} \mathbf{G}_i \phi \rrbracket)$$

Fixed-point theory

What is happening here is that we are computing *fixed-points*.

A set $X \subseteq S$ is a fixed point of a function $F \in \mathcal{P}(S) \to \mathcal{P}(S)$ iff F(X) = X.

We have that

$$\begin{bmatrix} \mathsf{EF}_n \phi \end{bmatrix} = \begin{bmatrix} \mathsf{EF}_{n+1} \phi \end{bmatrix} \\ = \begin{bmatrix} \phi \lor \mathsf{EX} \mathsf{EF}_n \phi \end{bmatrix} \\ = \begin{bmatrix} \phi \end{bmatrix} \cup \mathsf{pre}_\exists (\llbracket \mathsf{EF}_n \phi \rrbracket)$$

so $\llbracket \mathbf{EF}_n \phi \rrbracket$ is a fixed point of

$$F(Y) \doteq \llbracket \phi \rrbracket \cup \operatorname{pre}_{\exists}(Y)$$
.

Also $\llbracket \mathbf{EF} \phi \rrbracket$ is a fixed-point of F, since $\llbracket \mathbf{EF}_n \phi \rrbracket = \llbracket \mathbf{EF} \phi \rrbracket$.

More specifically, $\llbracket \mathbf{EF}_n \phi \rrbracket$ and $\llbracket \mathbf{EF} \phi \rrbracket$ are the least fixed point of F

Fixed-point theorem

A function $F \in \mathcal{P}(S) \to \mathcal{P}(S)$ is monotone iff $X \subseteq Y$ implies $F(X) \subseteq F(Y)$ of S.

Let $F^{i}(X) = F(F^{i-1}(X))$ for i > 0 and $F^{0}(X) = X$.

Given a collection of sets $C \subseteq \mathcal{P}(S)$, a set $X \in C$ is

- the least element of C iff $\forall Y \in C$. $X \subseteq Y$,
- the greatest element of C iff $\forall Y \in C$. $X \supseteq Y$.

Knaster-Tarski Theorem (special case)

Let S be a set with n elements and $F \in \mathcal{P}(S) \to \mathcal{P}(S)$ be a monotone function. Then

- $F^n(\emptyset)$ is the *least* fixed point of F, and
- Fⁿ(S) is the greatest fixed point of F Proof. See p241 H&R

This theorem justifies $F^n(\emptyset)$ and $F^n(S)$ being fixed points of F without the need, as before, to appeal to further details about F

Denotational semantics of temporal connectives

When $F \in \mathcal{P}(S)
ightarrow \mathcal{P}(S)$ is a monotone function, let us write

- μY . F(Y) for the least fixed point of F, and
- νY . F(Y) for the greatest fixed point of F.

With this notation, we can make the definitions

$\llbracket EF \phi \rrbracket$	=	$\mu Y.\llbracket \phi \rrbracket \cup pre_\exists (Y)$
$\llbracket \mathbf{EG} \phi \rrbracket$	=	$ u Y.\llbracket \phi \rrbracket \cap pre_\exists (Y)$
$\llbracket \mathbf{AF} \phi \rrbracket$	=	$\mu Y.\llbracket \phi \rrbracket \cup pre_\forall(Y)$
$\llbracket \mathbf{AG} \phi \rrbracket$	=	$ u Y.\llbracket \phi \rrbracket \cap pre_{\forall}(Y)$
$[\![\mathbf{E}[\phi \mathbf{U} \psi]]\!]$	=	$\mu Y. \llbracket \psi \rrbracket \cup (\llbracket \phi \rrbracket \cap pre_\exists (Y))$
$\llbracket \mathbf{A}[\phi \ \mathbf{U} \ \psi] \rrbracket$	=	$\mu Y. \ \llbracket \psi \rrbracket \cup (\llbracket \phi \rrbracket \cap pre_{\forall}(Y))$

In every case the F(Y) is monotone, so the Knaster-Tarski theorem assures us the fixed point exists and can be computed.

Further CTL Equivalences

The fixed-point characterisations of the CTL temporal operators justify the CTL equivalences

- $\mathbf{EF}\,\phi\qquad \equiv \ \phi \lor \mathbf{EX}\,\mathbf{EF}\,\phi$
- $\mathbf{EG}\,\phi\qquad \equiv \ \phi\wedge\mathbf{EX}\,\mathbf{EG}\,\phi$
- $\mathbf{AF}\,\phi\qquad \equiv \ \phi \lor \mathbf{AX}\,\mathbf{AF}\,\phi$
- $\mathbf{AG}\,\phi\qquad \equiv \ \phi\wedge\mathbf{AX}\,\mathbf{EG}\,\phi$
- $\mathbf{E}[\phi \ \mathbf{U} \ \psi] \quad \equiv \quad \psi \lor (\phi \land \mathbf{EX} \ \mathbf{E}[\phi \ \mathbf{U} \ \psi])$
- $\mathbf{A}[\phi \ \mathbf{U} \ \psi] \ \equiv \ \psi \lor (\phi \land \mathbf{AX} \ \mathbf{A}[\phi \ \mathbf{U} \ \psi])$

Fair CTL model checking

A fair version $\mathbf{E}_{\psi}\mathbf{G}\phi$ of $\mathbf{E}\mathbf{G}\phi$ holds in a state s if there exists a path from s such that

- 1. ϕ holds in every state of the path, and
- 2. ψ holds infinitely often along the path.

We can define it using a greatest fixed-point operator $\boldsymbol{\nu}$

$$\mathbf{E}_{\psi}\mathbf{G}\phi = \nu Z. \phi \wedge \mathbf{EX} \, \mathbf{E}[\phi \, \mathbf{U} \, (\psi \wedge Z)]$$

How do we compute it?

- Its definition has nested fixed-points as there is a µ least fixed-point operator in the E[_U_] definition
- In each iteration of the computation of the ν fixed-point, we have to complete a full set of iterations of the μ fixed-point computation.

Fair CTL model checking is useful both because of the extra expressivity it brings to CTL and because LTL model checking can be reduced to it.