How LTL Model Checking Works

Paul Jackson
Paul.Jackson@ed.ac.uk

University of Edinburgh

Formal Verification
Autumn 2023
LTL semantics recap

Definition (Transition System)

A transition system $\mathcal{M} = \langle S, S_0, \rightarrow, L \rangle$ consists of

- S set of states
- S_0 set of initial states
- $\rightarrow \subseteq S \times S$ transition relation
- $L : S \rightarrow \mathcal{P}(\text{Atom})$ labelling function

such that $\forall s. \exists t. s \rightarrow t$.

Definition (Path)

A path in a model $\mathcal{M} = \langle S, S_0, \rightarrow, L \rangle$ is an infinite sequence of states s_0, s_1, \ldots such that $s_0 \in S_0$ and $\forall i \geq 0. s_i \rightarrow s_{i+1}$. We write the path as $s_0 \rightarrow s_1 \rightarrow \ldots$.
The language accepted by a transition system

Take an automata-theoretic viewpoint on transition systems

- Consider
 - the set of states of a transition system as an alphabet Σ
 - each state is a letter
- Each infinite path π is then a word in Σ^ω
- The set of all paths of a transition system \mathcal{M} is the language $\mathcal{L}(\mathcal{M})$ accepted by \mathcal{M}
Language of a formula

\[\mathcal{L}(\phi) = \{ \pi \in S^\omega \mid \pi \models \phi \} \]

- Here \(\phi \) is over the same atomic propositions as \(\mathcal{M} \).

- Alternate definitions of the language of a transition system and of a formula use \(\mathcal{P}(\text{Atom}) \) as the alphabet instead of the set of states \(S \) (see H&R book).
 - If state has a Boolean component for each element of Atom, definitions are equivalent.
 - In NuSMV, with integer range, array and word types for state components, there is a rich language of atomic propositions and \(\mathcal{P}(\text{Atom}) \) is usually larger than \(S \).
Alternate presentation of LTL model-checking problem

The proposition

\[M \models^0 \phi \]

or equivalently

\[\forall \pi \in \text{Paths}(M). \, \pi \models^0 \phi \]

can now be phrased as

\[\mathcal{L}(M) \subseteq \mathcal{L}(\phi) \]

or equivalently

\[\mathcal{L}(M) \cap \overline{\mathcal{L}(\phi)} = \emptyset \]

where \(\overline{X} \) means \(S^\omega - X \)
Automata with same language as formulas

- In general, for each LTL formula there is not a transition system with the same language.
- However, there is a Büchi Automaton:
- A (Non-deterministic) Büchi Automaton is a tuple
 \[\langle S, \Sigma, \rightarrow, S_0, A \rangle \]
 where
 - \(S \) is a set of states
 - \(\Sigma \) is an alphabet
 - \(\rightarrow \subseteq S \times \Sigma \times S \) is the transition relation
 - \(S_0 \subseteq S \) is the set of initial states
 - \(A \subseteq S \) is the set of accepting states
- An infinite word is accepted by a BA iff there is some run of the BA for which some accepting state is visited infinitely often.
LTL Model checking idea

- Observe $L(\phi) = L(\neg \phi)$
- Let A_ϕ be a Büchi Automaton such that $L(\phi) = L(A_\phi)$
- For a suitable notion of composition $M \otimes A$ of a transition system M and BA A, we have that

\[L(M \otimes A) = L(M) \cap L(A) \]

Hence, to check

\[M \models^0 \phi \]

instead check that

\[L(M \otimes A_{\neg \phi}) = \emptyset \]

- Fair CTL model checking can be used to check for language emptiness.
Here is a transition system and LTL formula emulating a BA for checking $\text{F } \neg p$

```
MODULE formula(sys)

VAR
    st : {0, 1};

ASSIGN
    init(st) := 0;
    next(st) := case
        st = 0 & sys.p : 0;
        st = 0 & !sys.p : 1;
        st = 1 : 1;
    esac;

-- Accepting states are {1}.
-- If true, there are no accepting paths
LTLSPEC ! G F st = 1;

-- FAIRNESS st = 1;
-- CTLSPEC EG TRUE -- Does not work as expected
-- CTLSPEC FALSE -- Checks ! EG TRUE, as NuSMV only considers
    -- fair start states, states where EG TRUE
Composing BA with a transition system
This composition checks LTL property $Gp$ of model

MODULE model
VAR
  st : 0..2;
ASSIGN
  init(st) := 0;
  next(st) :=
    case
      st = 0 : {1,2};
      st = 1 : 1;
      st = 2 : 2;
    esac;
DEFINE
  p := st = 0 | st = 1;
--  p := TRUE;

MODULE main
VAR
  m : model;
  f : formula(m);
Model checking results 1

With definition in model

\[ p := st = 0 \mid st = 1; \]

we get

Trace Type: Counterexample

-> State: 1.1 <-
    m.st = 0
    f.st = 0
    m.p = TRUE

-> State: 1.2 <-
    m.st = 2
    m.p = FALSE

-- Loop starts here

-> State: 1.3 <-
    f.st = 1

-- Loop starts here

-> State: 1.4 <-

-> State: 1.5 <-
With definition in model

\[ p := \text{TRUE}; \]

we get

-- specification !( G ( F st = 1)) IN f is true