
How LTL Model Checking Works

Paul Jackson
Paul.Jackson@ed.ac.uk

University of Edinburgh

Formal Verification
Autumn 2023

1 / 11

LTL semantics recap

Definition (Transition System)

A transition system M = 〈S ,S0,→, L〉 consists of

S set of states
S0 set of initial states
→⊆ S × S transition relation
L : S → P(Atom) labelling function

such that ∀s.∃t. s → t.

Definition (Path)

A path in a model M = 〈S ,S0,→, L〉 is an infinite sequence of
states s0, s1, . . . such that s0 ∈ S0 and ∀i ≥ 0. si → si+1. We write
the path as s0 → s1 →

2 / 11

The language accepted by a transition system

Take an automata-theoretic viewpoint on transition systems
I Consider

I the set of states of a transition system as an alphabet Σ
I each state is a letter

I Each infinite path π is then a word in Σω

I The set of all paths of a transition system M is the
language L(M) accepted byM

3 / 11

Language of a formula

L(φ) = {π ∈ Sω | π |= φ}

I Here φ is over the same atomic propositions as M

I Alternate definitions of the language of a transition system
and of a formula use P(Atom) as the alphabet instead of the
set of states S (see H&R book).
I If state has a Boolean component for each element of Atom,

definitions are equivalent.
I In NuSMV, with integer range, array and word types for state

components, there is a rich language of atomic propositions
and P(Atom) is usually larger than S .

4 / 11

Alternate presentation of LTL model-checking problem

The proposition
M |=0 φ

or equivalently
∀π ∈ Paths(M). π |=0 φ

can now be phrased as

L(M) ⊆ L(φ)

or equivalently
L(M) ∩ L(φ) = ∅

where X means Sω − X

5 / 11

Automata with same language as formulas

I In general, for each LTL formula there is not a transition
system with the same language

I However, there is a Büchi Automaton:

I A (Non-deterministic) Büchi Automaton is a tuple

〈S ,Σ,→,S0,A〉

where
I S is a set of states
I Σ is an alphabet
I → ⊆ S × Σ× S is the transition relation
I S0 ⊆ S is the set of initial states
I A ⊆ S is the set of accepting states

I An infinite word is accepted by a BA iff there is some run of
the BA for which some accepting state is visited infinitely
often

6 / 11

LTL Model checking idea

I Observe L(φ) = L(¬φ)

I Let Aφ be a Büchi Automaton such that L(φ) = L(Aφ)

I For a suitable notion of compositionM⊗ A of a transition
system M and BA A, we have that

L(M⊗ A) = L(M) ∩ L(A)

Hence, to check
M |=0 φ

instead check that

L(M⊗ A¬φ) = ∅

I Fair CTL model checking can be used to check for language
emptiness.

7 / 11

Emulating Büchi Automata in NuSMV & nuXmv
Here is a transition system and LTL formula emulating a BA for
checking F¬p
MODULE formula(sys)

VAR

st : {0, 1};

ASSIGN

init(st) := 0;

next(st) := case

st = 0 & sys.p : 0;

st = 0 & !sys.p : 1;

st = 1 : 1;

esac;

-- Accepting states are {1}.

-- If true, there are no accepting paths

LTLSPEC ! G F st = 1;

-- FAIRNESS st = 1;

-- CTLSPEC EG TRUE -- Does not work as expected

-- CTLSPEC FALSE -- Checks ! EG TRUE, as NuSMV only considers

-- fair start states, states where EG TRUE

8 / 11

Composing BA with a transition system
This composition checks LTL property Gp of model

MODULE model

VAR

st : 0..2;

ASSIGN

init(st) := 0;

next(st) :=

case

st = 0 : {1,2};

st = 1 : 1;

st = 2 : 2;

esac;

DEFINE

p := st = 0 | st = 1;

-- p := TRUE;

MODULE main

VAR

m : model;

f : formula(m);

9 / 11

Model checking results 1

With definition in model

p := st = 0 | st = 1;

we get

Trace Type: Counterexample

-> State: 1.1 <-

m.st = 0

f.st = 0

m.p = TRUE

-> State: 1.2 <-

m.st = 2

m.p = FALSE

-- Loop starts here

-> State: 1.3 <-

f.st = 1

-- Loop starts here

-> State: 1.4 <-

-> State: 1.5 <-

10 / 11

Model checking results 2

With definiition in model

p := TRUE;

we get

-- specification !(G (F st = 1)) IN f is true

11 / 11

	Section 1 Title

