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Model Checking needs Very Large Sets
Given a model M = 〈S ,S0,→, L〉 and a formula φ, the CTL model
checking algorithm translates CTL formulas into sets of states:

[[φ]] ⊆ S

For realistic models, the size of S can be enormous.

Example: The NuSMV 2.6 distribution contains an example
guidance, which is a model of part of the NASA Space Shuttle’s
autopilot. According to NuSMV:

NuSMV > print_reachable_states

######################################################################

system diameter: 70

reachable states: 2.10443e+14 (2^47.5804) out of 2.63684e+27 (2^91.0909)

######################################################################

If each state is represented using 96 bits, it would need at least
approx 2.52 petabytes to explicitly store the set of all reachable
states.
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Boolean functions
I Notation: will use

I 0,1 for ⊥, >
I +, ·,¯ for ∨, ∧, ¬

I A Boolean function of n args is a function {0, 1}n → {0, 1}
I Example: f (x , y , z)

.
= x + y · z̄

I As models are finite, we can use {0, 1}k for set of states S

I Can represent a state subset X ⊆ S using a Boolean function

fX ∈ {0, 1}k → {0, 1} such that fX (s) = 1 iff s ∈ X

I Can represent a binary relation on states (e.g. a transition
relation) using a Boolean function.

g→ ∈ {0, 1}2k → {0, 1} such that g→(s, s ′) = 1 iff s → s ′

I Operations on Boolean functions form basis of many model
checking algorithms
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Representations of Boolean functions
From H&R, Figure 6.1

Representation of test for Boolean operations

Boolean functions compact? satisf’ty validity · + ¯

Prop. formulas often hard hard easy easy easy

Formulas in DNF sometimes easy hard hard easy hard

Formulas in CNF sometimes hard easy easy hard hard

Truth tables never hard hard hard hard hard

Reduced OBDDs often easy easy medium medium easy

often/sometimes/never are indications of space complexity
hard/medium/easy are indications of time complexity

Note: With a truth table representation, while operations are conceptually easy,
especially when table rows are always listed in some standard order, the time
complexities are hard, as table sizes and hence operation time complexities are
always exponential in the number of input variables.
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Binary decision trees

Tree for Boolean function f (x , y)
.

= x̄ · ȳ

y y

01 0 0

x

To compute value

I Start at root

I Take dashed line if value of var at current node is 0

I Take solid line if value of var at current node is 1

I Function value is value at terminal node reached
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Binary decision diagram

Similar to Binary Decision Tree, except that can nodes can have
multiple in-edges.

A binary decision diagram (BDD) is a finite DAG (Directed Acyclic
Graph) with

I unique initial node,

I all non-terminals labelled with a Boolean variable,

I all terminals labelled with 0 or 1,

I all edges labelled with 0 (dashed edge) or 1 (solid edge),

I each non-terminal has exactly 1 out-edge labelled 0 and 1
out-edge labelled 1.

We will use BDDs with two extra properties

I Reduced - redundancy is eliminated

I Ordered - variables always occur in a given order
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Reducing BDDs I
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Reducing BDDs II
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Reduction operations

1. Removal of duplicate terminals. If a BDD contains more than
one terminal 0-node, then redirect all edges which point to
such a 0-node to just one of them. Proceed in the same way
with terminal nodes labelled with 1.

2. Removal of redundant tests. If both outgoing edges of a node
n point to the same node m, then eliminate that node n,
sending all its incoming edges to m

3. Removal of duplicate non-terminals. If two distinct nodes n
and m in the BDD are the roots of structurally identical
subBDDS, then eliminate one of them, say m, and redirect all
its incoming edges to the other one.

A BDD is reduced if it has been simplified as much as possible
using these reduction operations
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Generality of BDDs
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y z
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A variable might occur more Ordering of variables on
than once on a path paths is not fixed
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Ordered BDDs

I Let [x1, . . . , xn] be an ordered list of variables without
duplicates

I A BDD B has an ordering [x1, . . . , xn] if
I All variable labels of B occur in [x1, . . . , xn], and
I if xj follows xi on a path in B, then j > i .

I An ordered BDD (OBDD) is a BDD which has an ordering for
some list of variables

I The orderings of 2 OBDDs B and B ′ are compatible if there
are no variables x , y such that
I x is before y in the ordering for B, and
I y is before x in the ordering for B ′.

Theorem: The reduced OBDD (ROBDD) representing a given
function f is unique. i.e.

If B and B ′ are two ROBDDs with compatible variable
orderings representing the same Boolean function, then
they have identical structure. (H&R Theorem 6.7)
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Impact of variable ordering on size I
Consider the Boolean function
(x1 + x2) · (x3 + x4) · · · · · (x2n−1 + x2n).

With variable ordering [x1, x2, x3, x4, . . .] ROBDD has 2n + 2 nodes.

For n = 3:

0 1

x1

x6

x5

x3

x4

x2
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Impact of variable ordering on size II
With ordering [x1, x3, . . . , x2n−1, x2, x4, . . . x2n], size is 2n+1.

For n = 3:
x1

x3 x3

x5 x5 x5

x2 x2 x2

x4x4

1

x6

0

x2

x5

Exist heuristics for determining orderings that often work well in
practice
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Impact of variable ordering on size III
I Common ALU operations such as

I shifts,
I add and subtract,
I bitwise and, or, exclusive or,
I parity (whether a word has an odd or even number of 1s),

all expressible using ROBDDs with total number of nodes
linear in word size

I E.g. for even number of 1s for n = 4

1 0

x1

x2

x3

x4

x3

x2

x4

I No efficient ROBDD representation for multiply operation
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Importance of canonical representation

(canonical = unique, computable)

Having a canonical representation enables easy tests for

I Whether a variable is redundant. A Boolean function f does
not depend on an input variable x if no nodes occur for x in
the ROBDD for f .

I Semantic equivalence. Check if f ≡ g by seeing if ROBDDs
for f and g have identical structure

I Validity. Check if ROBDD is single terminal node 1

I Satisfiability. Check if ROBDD is not the single terminal node
0

I Implication. Check if ∀~x .f (~x)→ g(~x) by seeing if ROBDD for
f · ḡ is 0
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