BDD operations

Paul Jackson!
Paul.Jackson@ed.ac.uk

University of Edinburgh

Formal Verification
Autumn 2023

!Diagrams from Huth & Ryan, LiCS, 2nd Ed.

1/15

reduce algorithm
Aim is to construct a ROBDD from an OBDD.
» Adds integer labels id(n) to each node n of a BDD in a single

bottom-up pass
» Key property: if nodes m and n are labelled, then id(m) = id(n)
iff m and n represent the same Boolean function.

» Rules for adding label to node n:

» remove duplicate terminals: if n terminal, set id(n) to val(n)

» remove redundant tests: if id(lo(n)) = id(hi(n)),

set id(n) to id(lo(n))
» remove duplicate nodes: if there exists a labelled node m such

{ var(m) = var(n)

that < id(lo(m)) = id(lo(n)) 3, setid(n) to id(m)
id(hi(m)) = id(hi(n))

Use hash table with (var(n),id(lo(n)),id(hi(n))) keys for O(1)
search time

» otherwise, set id(n) to unused number
» ROBDD generated by using 1 node from each class of nodes

with the same label
» Node sharing between ROBDDs possible if hash table shared

2/15

reduce example

3/15

apply algorithm | - specification
Given
» Boolean formulas f and g,
» ROBDDs Bf and Bg for f and g,

» a binary operation op on boolean formulas (e.g. A, V, @)

apply(op, Br, Bg)

computes a ROBDD for f op g.

Can also use apply for negation: compute the ROBDD for —f
using

apply(®, Br,[1])

In essence, this just swaps terminal nodes @ and .

4/15

apply algorithm Il - the Shannon expansion
Consider a Boolean formula f represented by a BDD with top-level

structure
Bo B,
Sub-BDDs By and Bj also correspond to formulas, say fy and f;

What are the relationships between f, fy and £7?

fo = f[0/x]
h = f[1/x]
f = Xfy+x.h

The implied formula
f = X.fl0/x] + x.f[1/x]

is called the Shannon expansion of Boolean formula f with respect
to the variable x.

5/15

apply algorithm Il - the key idea

Consider the Shannon expansion of f op g and pushing
substitutions through op:

fopg = X.(fopg)0/x]+x.(fopg)[l/x]

= %.(F[0/x] op g[0/x]) + x.(F[L/x] op g[1/x])

This recursive characterisation of op suggests a recursive algorithm
for computing op on BDDs

6/15

apply algorithm IV - the definition

apply(op, @\ ; QD\) QD\
Ve Ve 7/
B B C c’

/
apply(op, B, C) apply(op,B’,C’)

apply(op, @\ ; C)
Ve Ve
Ve Ve

B B’ apply(op, B, C) apply(op, B', C)

)9

where C is 1) a terminal node or 2) a non-terminal with var(root(C)) > x

apply(op, B ; @\) = @\

C c’ apply(op, B, C) apply(op, B, C’)

where B is 1) a terminal node or 2) a non-terminal with var(root(B)) > x

apply(op, ,) = where w = v op v

7/15

apply example

Compute apply(+, Bf, By) where Br and B, are:

Ry St

/
' P
' Pis
' .
' P
' -
' -
/ P
>

Rs ! Re S4 ! Ss

8/15

Recursive calls of apply
(R1, 51)

(R2, S3) (R3, S2)

(R4753) (Rs, S3) (R4’53) (Rs, S5)
0\ ©) 0\

!

(R5754) (R, Ss) (Re; S3) (R§753) (Rs;Sa) (Rs, Ss)
] o]

\
'

(Rs,;t) (Rs, Ss) (Rs Sa) (Rs, Ss)
[o]

9/15

Final result from apply execution

10/15

apply remarks

» In general, result will not be an ROBDD, so need to use
reduce afterwards
» Or can incorporate aspects of reduce into apply so result is
always reduced

» Naive implementation has run-time exponential in number of
variables.
» Each apply call in 3 of 4 cases results in two recursive calls

» However, only |B¢| - |Bg| distinct calls
» If calls memoized, O(|B¢| - |Bg|) time complexity is possible.

11/15

Other operations

» restrict(0,x, Br) computes ROBDD for f[0/x]

1. For each node n labelled with an x, incoming edges are
redirected to lo(n) and n is removed.
2. Resulting BDD is reduced.

> exists(x, Br) computes ROBDD for Ix. f
» Uses identity (Ix.f) = f[0/x] + f[1/x] and restrict and
apply functions

12/15

Time complexities

Algorithm | Input OBDD(s) | Output OBDD Time-complexity
reduce B reduced B O(|B] - log |B])
apply By, By (reduced) | Bf op g (reduced) O(|Bs| - |Bgl)
restrict | Br (reduced) Brjo/x) or Brj1/x (reduced) | O(|Bs| - log|Bs|)
3 By (reduced) B3y, 3x....3x,.f (reduced) NP-complete

H&R Figure 6.23

13/15

Encoding CTL algorithms using BDDs |

>

>

States represented using Boolean vectors (vi, ..., v,), where
Vi € {0, 1}.

Sets of states represented using BDDs on n variables xi, ... x,
describing characteristic functions of sets.

Set operations U, N,” computed using the apply algorithm
and the Boolean operations +, -,".
Transition relations described using BDDs on 2n variables.
» If Boolean variables xi, ... x, describe initial state and Boolean
variables xi,...x! describe next state, then good ordering is
X1y X1y X2y Xby « o+ Xy Xy
Translations of Boolean formulas describing state sets and
transition relations into BDDs make use of apply algorithm,
following structure of formulas
» This avoids the intractable exponential blow-up if instead one
tried to first construct a binary decision tree.

14 /15

Encoding CTL algorithms using BDDs ||
» The existential pre-image function
pre5(Y) = {s€S|3Fe€S.s s AseY}
is computed using
exists(x], exists(x},...exists(x), apply(:, B, BY))...))

where
» B_, is the ROBDD representing the transition relation —
> Bj, is the ROBDD representing set Y with the variables

Xi,...Xp renamed to xq,...x},

» To compute the universal pre-image function
preg(Y) = {se€S|Vs'eS.s—s =5 eV}
we observe that
prey(Y) = S— pres(S — ¥)

and note that the computation for — (set complement) is the

same as the computation for logical negation.
15/15

	Section 1 Title

