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reduce algorithm
Aim is to construct a ROBDD from an OBDD.
I Adds integer labels id(n) to each node n of a BDD in a single

bottom-up pass
I Key property: if nodes m and n are labelled, then id(m) = id(n)

iff m and n represent the same Boolean function.
I Rules for adding label to node n:

I remove duplicate terminals: if n terminal, set id(n) to val(n)
I remove redundant tests: if id(lo(n)) = id(hi(n)),

set id(n) to id(lo(n))
I remove duplicate nodes: if there exists a labelled node m such

that

 var(m) = var(n)
id(lo(m)) = id(lo(n))
id(hi(m)) = id(hi(n))

, set id(n) to id(m)

Use hash table with 〈var(n), id(lo(n)), id(hi(n))〉 keys for O(1)
search time

I otherwise, set id(n) to unused number
I ROBDD generated by using 1 node from each class of nodes

with the same label
I Node sharing between ROBDDs possible if hash table shared
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reduce example
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apply algorithm I - specification

Given

I Boolean formulas f and g ,

I ROBDDs Bf and Bg for f and g ,

I a binary operation op on boolean formulas (e.g. ∧, ∨, ⊕)

apply(op,Bf ,Bg )

computes a ROBDD for f op g .

Can also use apply for negation: compute the ROBDD for ¬f
using

apply(⊕,Bf , 1 )

In essence, this just swaps terminal nodes 0 and 1 .
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apply algorithm II - the Shannon expansion
Consider a Boolean formula f represented by a BDD with top-level
structure

@
@

mx
B0 B1

Sub-BDDs B0 and B1 also correspond to formulas, say f0 and f1

What are the relationships between f , f0 and f1?

f0 ≡ f [0/x ]

f1 ≡ f [1/x ]

f ≡ x .f0 + x .f1

The implied formula

f ≡ x .f [0/x ] + x .f [1/x ]

is called the Shannon expansion of Boolean formula f with respect
to the variable x .
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apply algorithm III - the key idea

Consider the Shannon expansion of f op g and pushing
substitutions through op:

f op g ≡ x .(f op g)[0/x ] + x .(f op g)[1/x ]

≡ x .(f [0/x ] op g [0/x ]) + x .(f [1/x ] op g [1/x ])

This recursive characterisation of op suggests a recursive algorithm
for computing op on BDDs
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apply algorithm IV - the definition

apply(op,
@@

mx
B B ′

,
@@

mx
C C ′

) =
@@

mx
apply(op,B,C) apply(op,B ′,C ′)

apply(op,
@
@

mx
B B ′

, C ) =
@
@

mx
apply(op,B,C) apply(op,B ′,C)

where C is 1) a terminal node or 2) a non-terminal with var(root(C)) > x

apply(op, B ,
@@

mx
C C ′

) =
@@

mx
apply(op,B,C) apply(op,B,C ′)

where B is 1) a terminal node or 2) a non-terminal with var(root(B)) > x

apply(op, u , v ) = w where w = u op v
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apply example

Compute apply(+,Bf ,Bg ) where Bf and Bg are:
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Recursive calls of apply
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Final result from apply execution
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apply remarks

I In general, result will not be an ROBDD, so need to use
reduce afterwards
I Or can incorporate aspects of reduce into apply so result is

always reduced

I Naive implementation has run-time exponential in number of
variables.
I Each apply call in 3 of 4 cases results in two recursive calls

I However, only |Bf | · |Bg | distinct calls
I If calls memoized, O(|Bf | · |Bg |) time complexity is possible.
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Other operations

I restrict(0, x ,Bf ) computes ROBDD for f [0/x ]

1. For each node n labelled with an x , incoming edges are
redirected to lo(n) and n is removed.

2. Resulting BDD is reduced.

I exists(x ,Bf ) computes ROBDD for ∃x . f
I Uses identity (∃x . f ) ≡ f [0/x ] + f [1/x ] and restrict and

apply functions
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Time complexities

Algorithm Input OBDD(s) Output OBDD Time-complexity

reduce B reduced B O(|B| · log |B|)
apply Bf , Bg (reduced) Bf op g (reduced) O(|Bf | · |Bg |)
restrict Bf (reduced) Bf [0/x] or Bf [1/x] (reduced) O(|Bf | · log |Bf |)
∃ Bf (reduced) B∃x1.∃x2....∃xn.f (reduced) NP-complete

H&R Figure 6.23
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Encoding CTL algorithms using BDDs I

I States represented using Boolean vectors 〈v1, . . . , vn〉, where
vi ∈ {0, 1}.

I Sets of states represented using BDDs on n variables x1, . . . xn
describing characteristic functions of sets.

I Set operations ∪,∩,¯ computed using the apply algorithm
and the Boolean operations +, ·, .̄

I Transition relations described using BDDs on 2n variables.
I If Boolean variables x1, . . . xn describe initial state and Boolean

variables x ′1, . . . x
′
n describe next state, then good ordering is

x1, x
′
1, x2, x

′
2, . . . xn, x

′
n.

I Translations of Boolean formulas describing state sets and
transition relations into BDDs make use of apply algorithm,
following structure of formulas
I This avoids the intractable exponential blow-up if instead one

tried to first construct a binary decision tree.
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Encoding CTL algorithms using BDDs II
I The existential pre-image function

pre∃(Y )
.

= {s ∈ S | ∃s ′ ∈ S . s → s ′ ∧ s ′ ∈ Y }

is computed using

exists(x ′1, exists(x ′2, . . . exists(x ′n, apply(·,B→,B ′
Y )) . . .))

where
I B→ is the ROBDD representing the transition relation →
I B ′

Y is the ROBDD representing set Y with the variables
x1, . . . xn renamed to x ′1, . . . x

′
n

I To compute the universal pre-image function

pre∀(Y )
.

= {s ∈ S | ∀s ′ ∈ S . s → s ′ ⇒ s ′ ∈ Y }

we observe that

pre∀(Y ) = S − pre∃(S − Y )

and note that the computation for − (set complement) is the
same as the computation for logical negation.
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