SAT and SMT algorithms!

Paul Jackson
Paul.Jackson@ed.ac.uk

School of Informatics
University of Edinburgh

Formal Verification
Autumn 2023

Including contributions by Elizabeth Polgreen

Basic questions

SAT: Given a propositional logic formula, is it satisfiable?

SMT (SAT Modulo Theories): Given a logical formula over theories
(e.g. Z, R, arrays, uninterpreted functions), is it satisfiable?

> A formula is valid just when its negation isunsatisfiable

» Hence SAT & SMT solvers are also automatic theorem provers

Huge range of applications
> Reasoning engines for many kinds of formal verification tools
» Constraint Programming: e.g. planning, scheduling, Suduko
» Automatic test-case generation for programs

» Synthesis of programs & systems from specifications

2/34

SAT solver progress

SAT is NP-complete: no polynomial time algorithm.

Yet, huge progress has been made in size of formula that modern

SAT solvers can solve:

Year | # Vars
1960 80
1970 100
1980 120
1990 700
2000 3,000
2010 | 600,000

Size of realistic problems solved in a few hours

3/34

Terminology

> An atom p is a propositional symbol

Also call an atom a propositional variable or simply a variable.
» A literal [is an atom p or the negation of an atom —p.
» A clause C is a disjunction of literals 1 V...V I,.

» A CNF formula F is a conjunction of clauses C; A ... A Cp

(CNF = Conjunctive Normal Form)

4/34

Use of CNF
Standard to always first convert formulas to CNF
» Can get exponential blow-up in size.

Consider putting into CNF
(X1 VAN X2) V...V (X2n AN X2n+1)

» If introduce a new variable for each non-terminal in a
formula's syntax tree, can get an equi-satisfiable formula with
constant-factor growth in formula size (Tseitin's encoding)

x1 = (x2 A x3)
becomes, with new variables z; and =z,
zZ1 N\ (21 = (X1 = 22)) A (22 = ((X2 A\ X3))

which can easily be converted to CNF with a constant
growth-factor
5/34

Abstract rules for DPLL

Core algorithms used in SAT and SMT solvers derived from DPLL
algorithm (Davis,Putnam,Logemann,Loveland) from 1962.

Here present algorithms using abstract rule-based system due to
Nieuwenhuis, Oliveras and Tinelli.

» General structure of algorithms easy to see

» Can work through simple examples on paper

6/34

General approach

» Try to incrementally build a satisfying truth assignment M for
a CNF formula F

> Grow M by

P guessing truth value of a literal not assigned in M
» deducing truth value from current M and F.

» If reach a contradiction (M |= —=C for some C € F), undo
some assignments in M and try starting to grow M again in a
different way.

» If all variables from M assigned and no contradiction, a
satisfying assignment has been found for F

» If exhaust possibilities for M and no satisfying assignment is
found, F is unsatisfiable

7/34

Assignments and States
States:
fail or M | F
where

> M is sequence of literals and decision points e
denoting a partial truth assignment

> F is a set of clauses denoting a CNF formula

First literal after each e is called a decision literal

Decision points start suffixes of M that might be discarded when
choosing new search direction

Def: If M= Mg e M; e---e M, where each M; contains no
decision points
» M; is decision level i of M

» M,, decision level n, is the current decision level
8/34

Initial and final states

Initial state
> () Il Fo

Expected final states
» fail if Fy is unsatisfiable

» M || G otherwise, where

» G is equivalent to Fy
> M satisfies G

9/34

Classic DPLL rules

Decide

[or =/ in clause of F,

M| F= Mel || F if
I o/ | I{/isundeﬁnedinl\/l

Backtrack

Mel N|=~C

MelN | F.C=> M=l | F,C |f{.¢N

Fail

o o] ME-C,
M || F,C = falil If{o&M

UnitPropagate

M= —C,

M| F,CVI=>MI | F,C\/lif{ ! o
| is undefined in M

10/34

Strategies for applying rules

» After each Decide or UnitPropagate should check for a
conflicting clause, a clause C for which

M = —C

If there is a conflicting clause, Backtrack or Fail are applied
immediately to avoid pointless search.

» UnitPropagate applied with higher priority than Decide since
it does not introduce branching in search
» Typically many UnitPropagate applications for each Decide
» BCP (Boolean Constraint Propagation): repeated application
of UnitPropagate

11/34

Strategies for applying rules (cont)

» Are many heuristics for choosing literal / in Decide rule.

» DLIS (Dynamic Largest Individual Sums): choose the
unassigned literal that satisfies the largest number of currently
unsatisfied clauses

» MOMS: choose literal with the Maximum number of
Occurrences in Minimum Size clauses.

» VSIDS (Variable State Independent Decaying Sum): choose
literal that has most frequently been involved in recent conflict
clauses.

Heuristics striving for choice with maximum impact

12/34

Example execution

Cl C2 C3 C4

M FV x| FV x| %5V T | % V%V % | Rule
() u u u u u u u u u

Decide x;
*x 0O wulu wvi|u wulu u u
X1 X2 0 1lu wvlu wlu uw o0 UnitProp G
®X1X> ® X3 0 1 0 u u u u u 0 Decide X3
oX1 X2 ® X3X4 o 110 11lu uvulu u o UnitProp G,
0X1X) ® X3X4 ® X5 0 1]/0 1]/0 wlu 0 O Decide xs
ex;xp®x3xsex5% [0 1 |0 1|0 0 0 O UnitProp G
0X1 X2 ® X3X4X5 o 110 111 wlu 1 o0 Backtrack C4
0X1X2 ® X3X4)?5)?6 0 1 0 1 1 1 0 1 0 Decide X6

» Last state here is final — no further rules apply
» Derivation shows that C; A G A C3 A (4 is satisfiable

» Final M is a satisfying assignment

13/34

Implication graphs

An implication graph describes the dependencies between literals in
an assignment
» 1 node per assigned literal
» Node label / @/ indicates literal / is assigned true at decision
level i.
» Roots of graph (nodes without in-edges) are literals in My and
decision literals
» [in-edges h — I,---,l, — | added if unit propagation with
clause =f; V ---V —l, V I sets literal /
» Each edge labelled with clause
» Edges indicate that (L A--- A ,) =/

> When current assignment is conflicting with conflicting clause
=l V.-V =i, then conflict node k and k in-edges
h— kK, -, I, = Kk added
» Each edge labelled with conflicting clause
» Edges indicate that (/L A --- A [,) = false

14 /34

Partial Implication graph example

Only shows current decision-level nodes and immediately-preceding
nodes.

G = va bV c G =
C4:d\/e\/g C5:

- 0Ol

<<

I Q.
O
I
Q)
<
]

b@2

G
a4 G c 04 G

Decision literal —

g@1 G
o

15/34

Backjump clause inference

The implication graph enables inference of new clauses that are

1.
2.

entailed by the current formula F, and

conflicting clauses under the current assignment.

Consider any cut of an implication graph with
» On right: conflicting node s
» On left: decision literal for current level and all literals at lower
levels
If literals on immediate left of cut are f1,...,/,, then can infer
the new clause
(b AN y) = false

or equivalently
V-Vl

16/34

Clause inference example

G=avbve G=cvd G=dvf
C4:d\/e\/g C5:f\/g'
Cutl Cut 2
b@2,
~G
a@4| Cl

Decision literal —

eol1
®

Backjump clause: pvive

17/34

Backjumping
If
P current assignment has form Me | N,
> there is some conflicting clause under this assignment,
» an inferred clause has form C’V " where /" is the only literal
at the current decision level,
» all literals of C’ are assigned in M,
then it is legitimate to
> backjump, set the assignment to M, and
» noting that C' vV /' has exactly one literal unassigned in M, to
apply unit propagation to extend the assighment to M /'.

The clause C" Vv I is called a backjump clause and the literal /' is
called a unique implication point (UIP).
» One UIP is the decision literal from the current level
» More generally, a UIP is any literal at the current level that
appears on every path from from the current decision literal to
the conflict node &.
» Often the UIP closest to k is chosen

18/34

Backjump rule

Replaces and generalises Backtrack rule in modern DPLL

implementations

Backjump

MelN | F.C=sM/I | F,C if

» C is the conflicting clause
» C'V I is the backjump clause

\

Me| N |= —C, and there

is some clause C'V/’ such

that:

—F,CECVI,

- ME-C,

— " is undefined in M,

and

— 1" or =/" occurs in F
orin Me| N

19/34

Learning

Learn

each atom of C occurs in
M| F= M| F,C if< Forin M,
FEC

» Common C are backjump clauses from the Backjump rule.

» Learned clauses record information about parts of search
space to be avoided in future search

» CDCL (Conflict Driven Clause Learning)
= Backjump + Learn

20/34

Forgetting

Forget
M| F,.C= M| F ifFEC

» Applied to C considered less important.
» Essential for controlling growth of required storage.

» Performance can degrade as F grows, so shrinking F can
improve performance.

21/34

Restarting

Restart
M| F=(I F

» Only used if F grown using learning.

» Additional knowledge causes Decide heuristics to work
differently and often explore search space in more compact
way.

» To preserve completeness, applied repeatedly with increasing
periodicity.

22/34

Why is DPLL correct? 1

Lemma (1 - nature of reachable states)
Assume () || F=* M || F'. then
1. F and F' are equivalent

2. If M is of the form My e LMy --- e |,M, where all M; are o
free, then F l,...l; = M; for all i in0Q...n.

Lemma (2 - nature of final states)

If() || F="S and S is final (no further transitions possible),
then either

1. S =fail, or
2.5=M || F/ where M = F

23/34

Why is DPLL correct? 2

Lemma (3 - transition sequences never go on for ever)
Every derivation () || F = S1 = So = --- is finite

Proof.
Given M of form Mg e My --- @ M,, where all M; are e free, define

the rank of M, p(M) as (ro, n, ..., rn) where r; = |M;|. Every
derivation must be finite as each basic DPLL rule strictly increases
the rank in a lexicographic order and the image of p is finite. O

24/34

Why is DPLL correct? 3

Theorem (1 - termination in fail state)
If() || F=="S and S is final, then

1. if S isfail, then F is unsatisfiable

2. if F is unsatisfiable then S is fail

25/34

Why is DPLL correct? 4

Proof.
1. Wehave () || F=*M || F/ = fail.

By Fail rule definition, thereisa C € F' s.t. M = —C.

Since M is e free, we have by Lemma 1(2) that F &= M, and
therefore F = —C.

However, F’ |= C and by Lemma 1(1) F = C.

Hence, F must be unsatisfiable.

2. By Lemmas 2 and 3.

26/34

Abstract DPLL modulo theories

Start just with one theory T. E.g.
» Equality with uninterpreted functions

» Linear arithmetic over Z or R.

Propositional atoms now both
» Propositional symbols

» Atomic relations over T involving individual expressions.
E.g. f(g(a))=b or3a+5b<7.

Previous rules (e.g. Decide, UnitPropagate) and = (propositional
entailment) treat syntactically distinct atoms as distinct

New rules involve =7 (entailment in theory T)

=1 is more general.
Eg. Frx<2vx>1 but EFx<2vx>1

27 /34

Theory learning
T-Learn

each atom of C occurs in
M| F= M| F,C if{ Forin M,
FErC

» One use is for catching when M is inconsistent from T point
of view.
> Say {h,...,In} C M suchthat F =7 (h A---Al,) = false
» Thenadd C=—-hV---V i,
» As C is conflicting, the Backjump or Fail rule is enabled
» Theory solvers can identify unsat cores, small subsets of literals
sufficient for creating a conflicting clause

» Frequency of checks F =1 C needs careful regulation, as cost
might be far higher than basic DPLL steps.

» Given size of F often just check =1 C. In this case C is
called a theory lemma.
28/34

Theory propagation

Guiding growth of M rather than just detecting when it is
T-inconsistent.

TheoryPropagate

M =TI,
M| F=MI| F if{lor—doccursinl-_
| is undefined in M

> If applied well, can dramatically increase performance

» Worth applying exhaustively in some cases before resorting to
Decide

29/34

Integration of SAT and theory solvers

Further new rules T-Backjump and T-Forget which generalise
Backjump and Forget are also needed.

Use of theory-sensitive rules rules requires close integration of SAT
and theory solvers

» SAT solvers need modification to be able to call out to theory
solvers

> Useful to have theory solvers incremental, able to be rerun
efficiently when input is some small increment on previous
input
» Also theory solvers need to support efficient retraction of
blocks of input to cope with backjumping

30/34

Handling multiple theories

Consider formula F mixing theories of linear real arithmetic and
uninterpreted functions:

f(Xl,O) > x3 N f(XQ,O) <x3 A
X1 2> X2 AN X0 2> X N\
X3 — f(Xl,O) Z 1

The popular Nelson-Oppen combination procedure involves first
purifying, adding additional variables and creating an equisatisfiable
formula with each atom over just one of the theories.

Formula F above is equisatisfiable with F; A Fp, where

Fi, = a1>2x3 A aa<x3 A x1>2x2 A xXp02>x1 A\
x3—ar>1 AN ag=0
Fr = a= f(Xl,ao) N a» = f(XQ,ao)

F1 just involves linear real arithmetic and F; just involves an
uninterpreted function

31/34

Nelson-Oppen example

Separate theory solvers can work on F; and F,, exchanging

equalities
i 1 2
R arith EUF
Original F; a1 > x3 a = f(Xl, 30)
a <x3 a = f(x, a0)
X1 2> X2
Xo 2 X1
X3 — ai > 1
ag = 0
Deduced x1 =x(*%) x1=x
atoms ay = a ap = ay(x*)
a; = x3(x)
false(x)

The (*) marks indicate when inference is in the respective theory

32/34

Nelson-Oppen
The basic Nelson-Oppen procedure relies on each theory T being
combined being convex:

For any set of literals L, if L1751 =t V--- Vs, = t, then
L =1 s;i = t; for some i.

» Linear real arithmetic and EUF (Equality and Uninterpreted
Functions) are convex.

» Linear integer arithmetic and bit-vector theories are not.

IfLis {0 <x,x <1}, then Lz x=0Vx=1, but
L%ZXZOaHdL%ZX:].

Extensions of Nelson-Oppen can handle a number of non-convex
theories.

In general, a combination of decidable theories might be
undecidable
33/34

Further reading

1. Solving SAT and SAT Modulo Theories: From an Abstract
Davis—-Putnam—Logemann—Loveland Procedure to DPLL(T)
Robert Neiuwenhuis, Albert Oliveras, Cesare Tinelli. Journal
of the ACM. 53(6):937-977, 2006

Main source for Abstract DPLL approach adopted in slides
2. Slides and videos from the 2012 SAT/SMT Summer School

Tinelli's presentation uses refined version of Abstract DPLL
3. SAT/SMT/AR/CP Summer Schools, 2011-2022

See later schools for an introduction to recent work and
applications.

4. Decision Procedures: An Algorithmic Point of View. D
Kroening, O. Strichman. 2nd Ed. 2016. Springer Nature.
Online from Learn Resource List.

Additional source for slides. Does not do Abstract DPLL.

Good reference for recent work.
34/34

https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1145/1217856.1217859
https://es-static.fbk.eu/events/satsmtschool12/
https://sat-smt-ar-school.gitlab.io/www/

