SAT and SMT algorithms ${ }^{1}$

Paul Jackson
Paul.Jackson@ed.ac.uk

School of Informatics
University of Edinburgh

Formal Verification

Autumn 2023
${ }^{1}$ Including contributions by Elizabeth Polgreen

Basic questions

SAT: Given a propositional logic formula, is it satisfiable?
SMT (SAT Modulo Theories): Given a logical formula over theories (e.g. \mathbb{Z}, \mathbb{R}, arrays, uninterpreted functions), is it satisfiable?

- A formula is valid just when its negation isunsatisfiable
- Hence SAT \& SMT solvers are also automatic theorem provers

Huge range of applications

- Reasoning engines for many kinds of formal verification tools
- Constraint Programming: e.g. planning, scheduling, Suduko
- Automatic test-case generation for programs
- Synthesis of programs \& systems from specifications

SAT solver progress

SAT is NP-complete: no polynomial time algorithm.

Yet, huge progress has been made in size of formula that modern SAT solvers can solve:

Year	\# Vars
1960	80
1970	100
1980	120
1990	700
2000	3,000
2010	600,000

Size of realistic problems solved in a few hours

Terminology

- An atom p is a propositional symbol

Also call an atom a propositional variable or simply a variable.

- A literal l is an atom p or the negation of an atom $\neg p$.
- A clause C is a disjunction of literals $I_{1} \vee \ldots \vee I_{n}$.
- A CNF formula F is a conjunction of clauses $C_{1} \wedge \ldots \wedge C_{m}$
(CNF \equiv Conjunctive Normal Form)

Use of CNF

Standard to always first convert formulas to CNF

- Can get exponential blow-up in size.

Consider putting into CNF

$$
\left(x_{1} \wedge x_{2}\right) \vee \ldots \vee\left(x_{2 n} \wedge x_{2 n+1}\right)
$$

- If introduce a new variable for each non-terminal in a formula's syntax tree, can get an equi-satisfiable formula with constant-factor growth in formula size (Tseitin's encoding)

$$
x_{1} \Rightarrow\left(x_{2} \wedge x_{3}\right)
$$

becomes, with new variables z_{1} and z_{2},

$$
z_{1} \wedge\left(z_{1} \Leftrightarrow\left(x_{1} \Rightarrow z_{2}\right)\right) \wedge\left(z_{2} \Leftrightarrow\left(\left(x_{2} \wedge x_{3}\right)\right)\right.
$$

which can easily be converted to CNF with a constant growth-factor

Abstract rules for DPLL

Core algorithms used in SAT and SMT solvers derived from DPLL algorithm (Davis,Putnam,Logemann,Loveland) from 1962.

Here present algorithms using abstract rule-based system due to Nieuwenhuis, Oliveras and Tinelli.

- General structure of algorithms easy to see
- Can work through simple examples on paper

General approach

- Try to incrementally build a satisfying truth assignment M for a CNF formula F
- Grow M by
- guessing truth value of a literal not assigned in M
- deducing truth value from current M and F.
- If reach a contradiction ($M \models \neg C$ for some $C \in F$), undo some assignments in M and try starting to grow M again in a different way.
- If all variables from M assigned and no contradiction, a satisfying assignment has been found for F
- If exhaust possibilities for M and no satisfying assignment is found, F is unsatisfiable

Assignments and States

States:

$$
\text { fail or } M \| F
$$

where

- M is sequence of literals and decision points • denoting a partial truth assignment
- F is a set of clauses denoting a CNF formula

First literal after each • is called a decision literal

Decision points start suffixes of M that might be discarded when choosing new search direction

Def: If $M=M_{0} \bullet M_{1} \bullet \cdots \bullet M_{n}$ where each M_{i} contains no decision points

- M_{i} is decision level i of M
- M_{n}, decision level n, is the current decision level

Initial and final states

Initial state

- () \| F_{0}

Expected final states

- fail if F_{0} is unsatisfiable
- $M \| G$ otherwise, where
- G is equivalent to F_{0}
- M satisfies G

Classic DPLL rules

Decide

$$
M\|F \Longrightarrow M \bullet l\| F \text { if }\left\{\begin{array}{l}
l \text { or } \neg / \text { in clause of } F \\
l \text { is undefined in } M
\end{array}\right.
$$

Backtrack
$M \bullet । N\|F, C \Longrightarrow M \neg \mid\| F, C$ if $\left\{\begin{array}{l}M \bullet|N|=\neg C \\ \bullet \notin N\end{array}\right.$
Fail

$$
M \| F, C \Longrightarrow \text { fail if }\left\{\begin{array}{l}
M \models \neg C \\
\bullet \notin M
\end{array}\right.
$$

UnitPropagate

$$
M\|F, C \vee I \Longrightarrow M I\| F, C \vee I \text { if }\left\{\begin{array}{l}
M \models \neg C, \\
I \text { is undefined in } M
\end{array}\right.
$$

Strategies for applying rules

- After each Decide or UnitPropagate should check for a conflicting clause, a clause C for which

$$
M \models \neg C
$$

If there is a conflicting clause, Backtrack or Fail are applied immediately to avoid pointless search.

- UnitPropagate applied with higher priority than Decide since it does not introduce branching in search
- Typically many UnitPropagate applications for each Decide
- BCP (Boolean Constraint Propagation): repeated application of UnitPropagate

Strategies for applying rules (cont)

- Are many heuristics for choosing literal / in Decide rule.
- DLIS (Dynamic Largest Individual Sums): choose the unassigned literal that satisfies the largest number of currently unsatisfied clauses
- MOMS: choose literal with the Maximum number of Occurrences in Minimum Size clauses.
- VSIDS (Variable State Independent Decaying Sum): choose literal that has most frequently been involved in recent conflict clauses.
Heuristics striving for choice with maximum impact

Example execution

M	$\begin{aligned} & C_{1} \\ & \overline{x_{1}} \vee x_{2} \end{aligned}$	$\begin{aligned} & C_{2} \\ & \overline{x_{3}} \vee x_{4} \end{aligned}$	$\begin{aligned} & C_{3} \\ & \overline{x_{5}} \vee \overline{x_{6}} \end{aligned}$	$\begin{aligned} & C_{4} \\ & x_{6} \vee \overline{x_{5}} \vee \overline{x_{2}} \end{aligned}$	Rule
()	$u \quad u$	$u \quad u$	$u \quad u$	$u \quad u \quad u$	
$\bullet x_{1}$	$\underline{0}$	$u \quad u$	$u \quad u$	$u \quad u \quad u$	Decide x_{1}
- $x_{1} x_{2}$	01	$u \quad u$	$u \quad u$	$\begin{array}{lll}u & u & 0\end{array}$	UnitProp C_{1}
- $x_{1} x_{2} \bullet x_{3}$	01	$\underline{0}$	$u \quad u$	$\begin{array}{lll}u & u & 0\end{array}$	Decide x_{3}
- $x_{1} x_{2} \bullet x_{3} x_{4}$	01	01	$u \quad u$	$\begin{array}{lll}u & u & 0\end{array}$	UnitProp C_{2}
$\bullet x_{1} x_{2} \bullet x_{3} x_{4} \bullet x_{5}$	01	01	$\underline{0}$	$\begin{array}{lll}u & 0 & 0\end{array}$	Decide x_{5}
- $x_{1} x_{2} \bullet x_{3} x_{4} \bullet x_{5} \overline{x_{6}}$	01	01	01		UnitProp C_{3}
$\bullet x_{1} x_{2} \bullet x_{3} x_{4} \overline{x_{5}}$	01	01	$1 u$	$\begin{array}{lll}u & 1 & 0\end{array}$	Backtrack C_{4}
- $x_{1} x_{2} \bullet x_{3} x_{4} \overline{x_{5}} \overline{x_{6}}$	01	01	11	0 1 0	Decide \bar{x}_{6}

- Last state here is final - no further rules apply
- Derivation shows that $C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4}$ is satisfiable
- Final M is a satisfying assignment

Implication graphs

An implication graph describes the dependencies between literals in an assignment

- 1 node per assigned literal
- Node label / @i indicates literal / is assigned true at decision level i.
- Roots of graph (nodes without in-edges) are literals in M_{0} and decision literals
- I in-edges $I_{1} \rightarrow I, \cdots, I_{n} \rightarrow I$ added if unit propagation with clause $\neg I_{1} \vee \cdots \vee \neg I_{n} \vee I$ sets literal I
- Each edge labelled with clause
- Edges indicate that $\left(I_{1} \wedge \cdots \wedge I_{n}\right) \Rightarrow I$
- When current assignment is conflicting with conflicting clause $\neg I_{1} \vee \cdots \vee \neg I_{n}$, then conflict node κ and κ in-edges
$I_{1} \rightarrow \kappa, \cdots, I_{n} \rightarrow \kappa$ added
- Each edge labelled with conflicting clause
- Edges indicate that $\left(I_{1} \wedge \cdots \wedge I_{n}\right) \Rightarrow$ false

Partial Implication graph example

Only shows current decision-level nodes and immediately-preceding nodes.

$$
\begin{array}{lll}
C_{1}=\bar{a} \vee \bar{b} \vee c & C_{2}=\bar{c} \vee d \quad C_{3}=\bar{d} \vee \bar{f} \\
C_{4}=\bar{d} \vee e \vee g & C_{5}=f \vee \bar{g} &
\end{array}
$$

Backjump clause inference

The implication graph enables inference of new clauses that are

1. entailed by the current formula F, and
2. conflicting clauses under the current assignment.

- Consider any cut of an implication graph with
- On right: conflicting node κ
- On left: decision literal for current level and all literals at lower levels
- If literals on immediate left of cut are I_{1}, \ldots, I_{n}, then can infer the new clause

$$
\left(I_{1} \wedge \cdots \wedge I_{n}\right) \Rightarrow \text { false }
$$

or equivalently

$$
\neg I_{1} \vee \cdots \vee \neg I_{n}
$$

Clause inference example

$$
\begin{array}{lll}
C_{1}=\bar{a} \vee \bar{b} \vee c & C_{2}=\bar{c} \vee d & C_{3}=\bar{d} \vee \bar{f} \\
C_{4}=\bar{d} \vee e \vee g & C_{5}=f \vee \bar{g}
\end{array}
$$

Cut 1

Backjump clause: $\quad \bar{b} \vee \bar{a} \vee e$

Backjumping

If

- current assignment has form $\mathrm{M} \bullet / \mathrm{N}$,
- there is some conflicting clause under this assignment,
- an inferred clause has form $C^{\prime} \vee I^{\prime}$ where I^{\prime} is the only literal at the current decision level,
- all literals of C^{\prime} are assigned in M,
then it is legitimate to
- backjump, set the assignment to M, and
- noting that $C^{\prime} \vee I^{\prime}$ has exactly one literal unassigned in M, to apply unit propagation to extend the assignment to $M I^{\prime}$.

The clause $C^{\prime} \vee I^{\prime}$ is called a backjump clause and the literal I^{\prime} is called a unique implication point (UIP).

- One UIP is the decision literal from the current level
- More generally, a UIP is any literal at the current level that appears on every path from from the current decision literal to the conflict node κ.
- Often the UIP closest to κ is chosen

Backjump rule

Replaces and generalises Backtrack rule in modern DPLL implementations

Backjump

- C is the conflicting clause
- $C^{\prime} \vee I^{\prime}$ is the backjump clause

Learning

Learn

$$
M\|F \Longrightarrow M\| F, C \text { if }\left\{\begin{array}{l}
\text { each atom of } C \text { occurs in } \\
F \text { or in } M \\
F \models C
\end{array}\right.
$$

- Common C are backjump clauses from the Backjump rule.
- Learned clauses record information about parts of search space to be avoided in future search
- CDCL (Conflict Driven Clause Learning)
= Backjump + Learn

Forgetting

Forget

$$
M\|F, C \Longrightarrow M\| F \text { if } F \models C
$$

- Applied to Considered less important.
- Essential for controlling growth of required storage.
- Performance can degrade as F grows, so shrinking F can improve performance.

Restarting

Restart

$$
M\|F \Longrightarrow()\| F
$$

- Only used if F grown using learning.
- Additional knowledge causes Decide heuristics to work differently and often explore search space in more compact way.
- To preserve completeness, applied repeatedly with increasing periodicity.

Why is DPLL correct? 1

Lemma (1-nature of reachable states)
Assume () \| $F \Longrightarrow^{*} M \| F^{\prime}$. then

1. F and F^{\prime} are equivalent
2. If M is of the form $M_{0} \bullet I_{1} M_{1} \cdots \bullet I_{n} M_{n}$ where all M_{i} are \bullet free, then $F, I_{1}, \ldots I_{i} \models M_{i}$ for all i in $0 \ldots n$.

Lemma (2 - nature of final states)
If ()$\| F \Longrightarrow^{*} S$ and S is final (no further transitions possible), then either

1. $S=$ fail, or
2. $S=M \| F^{\prime}$ where $M=F$

Why is DPLL correct? 2

Lemma (3-transition sequences never go on for ever)
Every derivation () \| $F \Longrightarrow S_{1} \Longrightarrow S_{2} \Longrightarrow \cdots$ is finite
Proof.
Given M of form $M_{0} \bullet M_{1} \cdots \bullet M_{n}$ where all M_{i} are \bullet free, define the rank of $M, \rho(M)$ as $\left\langle r_{0}, r_{1}, \ldots, r_{n}\right\rangle$ where $r_{i}=\left|M_{i}\right|$. Every derivation must be finite as each basic DPLL rule strictly increases the rank in a lexicographic order and the image of ρ is finite.

Why is DPLL correct? 3

Theorem (1-termination in fail state)
If ()$\| F \Longrightarrow{ }^{*} S$ and S is final, then

1. if S is fail, then F is unsatisfiable
2. if F is unsatisfiable then S is fail

Why is DPLL correct? 4

Proof.

1. We have () $\left\|F \Longrightarrow{ }^{*} M\right\| F^{\prime} \Longrightarrow$ fail.

By Fail rule definition, there is a $C \in F^{\prime}$ s.t. $M \models \neg C$.
Since M is • free, we have by Lemma 1 (2) that $F \models M$, and therefore $F \models \neg C$.

However, $F^{\prime} \models C$ and by Lemma 1(1) $F \models C$.
Hence, F must be unsatisfiable.
2. By Lemmas 2 and 3 .

Abstract DPLL modulo theories

Start just with one theory T. E.g.

- Equality with uninterpreted functions
- Linear arithmetic over \mathbb{Z} or \mathbb{R}.

Propositional atoms now both

- Propositional symbols
- Atomic relations over T involving individual expressions. E.g. $f(g(a))=b$ or $3 a+5 b \leq 7$.

Previous rules (e.g. Decide, UnitPropagate) and \models (propositional entailment) treat syntactically distinct atoms as distinct

New rules involve \models_{T} (entailment in theory T)
\models_{T} is more general.
E.g. $\models_{T} x \leq 2 \vee x \geq 1$ but $\not \models x \leq 2 \vee x \geq 1$

Theory learning

T-Learn

$$
M\|F \Longrightarrow M\| F, C \text { if }\left\{\begin{array}{l}
\text { each atom of } C \text { occurs in } \\
F \text { or in } M \\
F \models_{T} C
\end{array}\right.
$$

- One use is for catching when M is inconsistent from T point of view.
- Say $\left\{I_{1}, \ldots, I_{n}\right\} \subseteq M$ such that $F \models_{T}\left(I_{1} \wedge \cdots \wedge I_{n}\right) \Rightarrow$ false
- Then add $C=\neg l_{1} \vee \cdots \vee \neg I_{n}$
- As C is conflicting, the Backjump or Fail rule is enabled
- Theory solvers can identify unsat cores, small subsets of literals sufficient for creating a conflicting clause
- Frequency of checks $F \models_{T} C$ needs careful regulation, as cost might be far higher than basic DPLL steps.
- Given size of F often just check $\models_{T} C$. In this case C is called a theory lemma.

Theory propagation

Guiding growth of M rather than just detecting when it is T-inconsistent.

TheoryPropagate

$$
M\|F \Longrightarrow M I\| F \text { if }\left\{\begin{array}{l}
M \models T l \\
l \text { or } \neg / \text { occurs in } F \\
l \text { is undefined in } M
\end{array}\right.
$$

- If applied well, can dramatically increase performance
- Worth applying exhaustively in some cases before resorting to Decide

Integration of SAT and theory solvers

Further new rules T-Backjump and T-Forget which generalise Backjump and Forget are also needed.

Use of theory-sensitive rules rules requires close integration of SAT and theory solvers

- SAT solvers need modification to be able to call out to theory solvers
- Useful to have theory solvers incremental, able to be rerun efficiently when input is some small increment on previous input
- Also theory solvers need to support efficient retraction of blocks of input to cope with backjumping

Handling multiple theories

Consider formula F mixing theories of linear real arithmetic and uninterpreted functions:

$$
\begin{gathered}
f\left(x_{1}, 0\right) \geq x_{3} \wedge f\left(x_{2}, 0\right) \leq x_{3} \wedge \\
x_{1} \geq x_{2} \wedge x_{2} \geq x_{2} \wedge \\
x_{3}-f\left(x_{1}, 0\right) \geq 1
\end{gathered}
$$

The popular Nelson-Oppen combination procedure involves first purifying, adding additional variables and creating an equisatisfiable formula with each atom over just one of the theories.

Formula F above is equisatisfiable with $F_{1} \wedge F_{2}$, where

$$
\begin{aligned}
F_{1}= & a_{1} \geq x_{3} \wedge a_{2} \leq x_{3} \wedge x_{1} \geq x_{2} \wedge x_{2} \geq x_{1} \wedge \\
& x_{3}-a_{1} \geq 1 \wedge a_{0}=0 \\
F_{2}= & a_{1}=f\left(x_{1}, a_{0}\right) \wedge a_{2}=f\left(x_{2}, a_{0}\right)
\end{aligned}
$$

F_{1} just involves linear real arithmetic and F_{2} just involves an uninterpreted function

Nelson-Oppen example

Separate theory solvers can work on F_{1} and F_{2}, exchanging equalities

i	1	2
	R arith	EUF
Original F_{i}	$a_{1} \geq x_{3}$	$a_{1}=f\left(x_{1}, a_{0}\right)$
	$a_{2} \leq x_{3}$	$a_{2}=f\left(x_{2}, a_{0}\right)$
	$x_{1} \geq x_{2}$	
	$x_{2} \geq x_{1}$	
	$x_{3}-a_{1} \geq 1$	
	$a_{0}=0$	
Deduced	$x_{1}=x_{2}(*)$	$x_{1}=x_{2}$
atoms	$a_{1}=a_{2}$	$a_{1}=a_{2}(*)$
	$a_{1}=x_{3}(*)$	
	false $(*)$	

The (*) marks indicate when inference is in the respective theory

Nelson-Oppen

The basic Nelson-Oppen procedure relies on each theory T being combined being convex:

For any set of literals L, if $L \models{ }_{T} s_{1}=t_{1} \vee \cdots \vee s_{n}=t_{n}$ then $L \models_{T} s_{i}=t_{i}$ for some i.

- Linear real arithmetic and EUF (Equality and Uninterpreted Functions) are convex.
- Linear integer arithmetic and bit-vector theories are not.

If L is $\{0 \leq x, x \leq 1\}$, then $L \models_{\mathbb{Z}} x=0 \vee x=1$, but $L \not \forall_{\mathbb{Z}} x=0$ and $L \not \models_{\mathbb{Z}} x=1$

Extensions of Nelson-Oppen can handle a number of non-convex theories.

In general, a combination of decidable theories might be undecidable

Further reading

1. Solving SAT and SAT Modulo Theories: From an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T) Robert Neiuwenhuis, Albert Oliveras, Cesare Tinelli. Journal of the ACM. 53(6):937-977, 2006
Main source for Abstract DPLL approach adopted in slides
2. Slides and videos from the 2012 SAT/SMT Summer School

Tinelli's presentation uses refined version of Abstract DPLL
3. SAT/SMT/AR/CP Summer Schools, 2011-2022

See later schools for an introduction to recent work and applications.
4. Decision Procedures: An Algorithmic Point of View. D Kroening, O. Strichman. 2nd Ed. 2016. Springer Nature. Online from Learn Resource List.

Additional source for slides. Does not do Abstract DPLL. Good reference for recent work.

