
SAT and SMT algorithms1

Paul Jackson
Paul.Jackson@ed.ac.uk

School of Informatics
University of Edinburgh

Formal Verification
Autumn 2023

1Including contributions by Elizabeth Polgreen

Basic questions

SAT: Given a propositional logic formula, is it satisfiable?

SMT (SAT Modulo Theories): Given a logical formula over theories
(e.g. Z, R, arrays, uninterpreted functions), is it satisfiable?

I A formula is valid just when its negation isunsatisfiable

I Hence SAT & SMT solvers are also automatic theorem provers

Huge range of applications

I Reasoning engines for many kinds of formal verification tools

I Constraint Programming: e.g. planning, scheduling, Suduko

I Automatic test-case generation for programs

I Synthesis of programs & systems from specifications

2 / 34

SAT solver progress

SAT is NP-complete: no polynomial time algorithm.

Yet, huge progress has been made in size of formula that modern
SAT solvers can solve:

Year # Vars

1960 80
1970 100
1980 120
1990 700
2000 3,000
2010 600,000

Size of realistic problems solved in a few hours

3 / 34

Terminology

I An atom p is a propositional symbol

Also call an atom a propositional variable or simply a variable.

I A literal l is an atom p or the negation of an atom ¬p.

I A clause C is a disjunction of literals l1 ∨ . . . ∨ ln.

I A CNF formula F is a conjunction of clauses C1 ∧ . . . ∧ Cm

(CNF ≡ Conjunctive Normal Form)

4 / 34

Use of CNF
Standard to always first convert formulas to CNF

I Can get exponential blow-up in size.

Consider putting into CNF

(x1 ∧ x2) ∨ . . . ∨ (x2n ∧ x2n+1)

I If introduce a new variable for each non-terminal in a
formula’s syntax tree, can get an equi-satisfiable formula with
constant-factor growth in formula size (Tseitin’s encoding)

x1 ⇒ (x2 ∧ x3)

becomes, with new variables z1 and z2,

z1 ∧ (z1 ⇔ (x1 ⇒ z2)) ∧ (z2 ⇔ ((x2 ∧ x3))

which can easily be converted to CNF with a constant
growth-factor

5 / 34

Abstract rules for DPLL

Core algorithms used in SAT and SMT solvers derived from DPLL
algorithm (Davis,Putnam,Logemann,Loveland) from 1962.

Here present algorithms using abstract rule-based system due to
Nieuwenhuis, Oliveras and Tinelli.

I General structure of algorithms easy to see

I Can work through simple examples on paper

6 / 34

General approach

I Try to incrementally build a satisfying truth assignment M for
a CNF formula F

I Grow M by
I guessing truth value of a literal not assigned in M
I deducing truth value from current M and F .

I If reach a contradiction (M |= ¬C for some C ∈ F), undo
some assignments in M and try starting to grow M again in a
different way.

I If all variables from M assigned and no contradiction, a
satisfying assignment has been found for F

I If exhaust possibilities for M and no satisfying assignment is
found, F is unsatisfiable

7 / 34

Assignments and States
States:

fail or M ‖ F

where

I M is sequence of literals and decision points •
denoting a partial truth assignment

I F is a set of clauses denoting a CNF formula

First literal after each • is called a decision literal

Decision points start suffixes of M that might be discarded when
choosing new search direction

Def: If M = M0 •M1 • · · · •Mn where each Mi contains no
decision points

I Mi is decision level i of M

I Mn, decision level n, is the current decision level
8 / 34

Initial and final states

Initial state

I () ‖ F0

Expected final states

I fail if F0 is unsatisfiable
I M ‖ G otherwise, where

I G is equivalent to F0

I M satisfies G

9 / 34

Classic DPLL rules

Decide

M ‖ F =⇒ M • l ‖ F if
{
l or ¬l in clause of F ,
l is undefined in M

Backtrack

M • l N ‖ F ,C =⇒ M ¬l ‖ F ,C if

{
M • l N |= ¬C
• 6∈ N

Fail

M ‖ F ,C =⇒ fail if

{
M |= ¬C ,
• 6∈ M

UnitPropagate

M ‖ F ,C ∨ l =⇒ M l ‖ F ,C ∨ l if
{
M |= ¬C ,
l is undefined in M

10 / 34

Strategies for applying rules

I After each Decide or UnitPropagate should check for a
conflicting clause, a clause C for which

M |= ¬C .

If there is a conflicting clause, Backtrack or Fail are applied
immediately to avoid pointless search.

I UnitPropagate applied with higher priority than Decide since
it does not introduce branching in search
I Typically many UnitPropagate applications for each Decide
I BCP (Boolean Constraint Propagation): repeated application

of UnitPropagate

11 / 34

Strategies for applying rules (cont)

I Are many heuristics for choosing literal l in Decide rule.
I DLIS (Dynamic Largest Individual Sums): choose the

unassigned literal that satisfies the largest number of currently
unsatisfied clauses

I MOMS: choose literal with the Maximum number of
Occurrences in Minimum Size clauses.

I VSIDS (Variable State Independent Decaying Sum): choose
literal that has most frequently been involved in recent conflict
clauses.

Heuristics striving for choice with maximum impact

12 / 34

Example execution

C1 C2 C3 C4

M x̄1 ∨ x2 x̄3 ∨ x4 x̄5 ∨ x̄6 x6 ∨ x̄5 ∨ x̄2 Rule
() u u u u u u u u u

•x1 0 u u u u u u u u
Decide x1

•x1x2 0 1 u u u u u u 0
UnitProp C1

•x1x2 • x3 0 1 0 u u u u u 0
Decide x3

•x1x2 • x3x4 0 1 0 1 u u u u 0
UnitProp C2

•x1x2 • x3x4 • x5 0 1 0 1 0 u u 0 0
Decide x5

•x1x2 • x3x4 • x5x̄6 0 1 0 1 0 1 0 0 0
UnitProp C3

•x1x2 • x3x4x̄5 0 1 0 1 1 u u 1 0
Backtrack C4

•x1x2 • x3x4x̄5x̄6 0 1 0 1 1 1 0 1 0
Decide x̄6

I Last state here is final – no further rules apply
I Derivation shows that C1 ∧ C2 ∧ C3 ∧ C4 is satisfiable
I Final M is a satisfying assignment

13 / 34

Implication graphs

An implication graph describes the dependencies between literals in
an assignment
I 1 node per assigned literal

I Node label l @i indicates literal l is assigned true at decision
level i .

I Roots of graph (nodes without in-edges) are literals in M0 and
decision literals

I I in-edges l1 → l , · · · , ln → l added if unit propagation with
clause ¬l1 ∨ · · · ∨ ¬ln ∨ l sets literal l
I Each edge labelled with clause
I Edges indicate that (l1 ∧ · · · ∧ ln)⇒ l

I When current assignment is conflicting with conflicting clause
¬l1 ∨ · · · ∨ ¬ln, then conflict node κ and κ in-edges
l1 → κ, · · · , ln → κ added
I Each edge labelled with conflicting clause
I Edges indicate that (l1 ∧ · · · ∧ ln)⇒ false

14 / 34

Partial Implication graph example

Only shows current decision-level nodes and immediately-preceding
nodes.

C1 = ā ∨ b̄ ∨ c C2 = c̄ ∨ d C3 = d̄ ∨ f̄
C4 = d̄ ∨ e ∨ g C5 = f ∨ ḡ

Decision literal →
a @4

b @2

c @4 d @4

ē @1

f̄ @4

g @4

κC1

C
1

C2

C3

C
4

C4

C
5

C5

15 / 34

Backjump clause inference

The implication graph enables inference of new clauses that are

1. entailed by the current formula F , and

2. conflicting clauses under the current assignment.

I Consider any cut of an implication graph with
I On right: conflicting node κ
I On left: decision literal for current level and all literals at lower

levels

I If literals on immediate left of cut are l1, . . . , ln, then can infer
the new clause

(l1 ∧ · · · ∧ ln)⇒ false

or equivalently
¬l1 ∨ · · · ∨ ¬ln

16 / 34

Clause inference example

C1 = ā ∨ b̄ ∨ c C2 = c̄ ∨ d C3 = d̄ ∨ f̄
C4 = d̄ ∨ e ∨ g C5 = f ∨ ḡ

Decision literal →
a @4

b @2

c @4 d @4

ē @1

f̄ @4

g @4

κC1

C
1

C2

C3

C
4

C4

C
5

C5

Cut 1

b̄ ∨ ā ∨ e

Cut 2

d̄ ∨ eBackjump clause:

17 / 34

Backjumping
If
I current assignment has form M • l N,
I there is some conflicting clause under this assignment,
I an inferred clause has form C ′ ∨ l ′ where l ′ is the only literal

at the current decision level,
I all literals of C ′ are assigned in M,

then it is legitimate to
I backjump, set the assignment to M, and
I noting that C ′ ∨ l ′ has exactly one literal unassigned in M, to

apply unit propagation to extend the assignment to M l ′.

The clause C ′ ∨ l ′ is called a backjump clause and the literal l ′ is
called a unique implication point (UIP).
I One UIP is the decision literal from the current level
I More generally, a UIP is any literal at the current level that

appears on every path from from the current decision literal to
the conflict node κ.

I Often the UIP closest to κ is chosen 18 / 34

Backjump rule
Replaces and generalises Backtrack rule in modern DPLL
implementations

Backjump

M • l N ‖ F ,C =⇒ M l ′ ‖ F ,C if



M • l N |= ¬C , and there
is some clause C ′∨l ′ such
that:
− F ,C |= C ′ ∨ l ′,
− M |= ¬C ′,
− l ′ is undefined in M,
and
− l ′ or ¬l ′ occurs in F

or in M • l N

I C is the conflicting clause

I C ′ ∨ l ′ is the backjump clause
19 / 34

Learning

Learn

M ‖ F =⇒ M ‖ F ,C if


each atom of C occurs in
F or in M,
F |= C

I Common C are backjump clauses from the Backjump rule.

I Learned clauses record information about parts of search
space to be avoided in future search

I CDCL (Conflict Driven Clause Learning)
= Backjump + Learn

20 / 34

Forgetting

Forget
M ‖ F ,C =⇒ M ‖ F if F |= C

I Applied to C considered less important.

I Essential for controlling growth of required storage.

I Performance can degrade as F grows, so shrinking F can
improve performance.

21 / 34

Restarting

Restart
M ‖ F =⇒ () ‖ F

I Only used if F grown using learning.

I Additional knowledge causes Decide heuristics to work
differently and often explore search space in more compact
way.

I To preserve completeness, applied repeatedly with increasing
periodicity.

22 / 34

Why is DPLL correct? 1

Lemma (1 - nature of reachable states)

Assume () ‖ F =⇒∗ M ‖ F ′. then

1. F and F ′ are equivalent

2. If M is of the form M0 • l1M1 · · · • lnMn where all Mi are •
free, then F , l1, . . . li |= Mi for all i in 0 . . . n.

Lemma (2 - nature of final states)

If () ‖ F =⇒∗ S and S is final (no further transitions possible),
then either

1. S = fail, or

2. S = M ‖ F ′ where M |= F

23 / 34

Why is DPLL correct? 2

Lemma (3 - transition sequences never go on for ever)

Every derivation () ‖ F =⇒ S1 =⇒ S2 =⇒ · · · is finite

Proof.
Given M of form M0 •M1 · · · •Mn where all Mi are • free, define
the rank of M, ρ(M) as 〈r0, r1, . . . , rn〉 where ri = |Mi |. Every
derivation must be finite as each basic DPLL rule strictly increases
the rank in a lexicographic order and the image of ρ is finite.

24 / 34

Why is DPLL correct? 3

Theorem (1 - termination in fail state)

If () ‖ F =⇒∗ S and S is final, then

1. if S is fail, then F is unsatisfiable

2. if F is unsatisfiable then S is fail

25 / 34

Why is DPLL correct? 4

Proof.

1. We have () ‖ F =⇒∗ M ‖ F ′ =⇒ fail.

By Fail rule definition, there is a C ∈ F ′ s.t. M |= ¬C .

Since M is • free, we have by Lemma 1(2) that F |= M, and
therefore F |= ¬C .

However, F ′ |= C and by Lemma 1(1) F |= C .

Hence, F must be unsatisfiable.

2. By Lemmas 2 and 3.

26 / 34

Abstract DPLL modulo theories

Start just with one theory T . E.g.

I Equality with uninterpreted functions

I Linear arithmetic over Z or R.

Propositional atoms now both

I Propositional symbols

I Atomic relations over T involving individual expressions.
E.g. f (g(a)) = b or 3a + 5b ≤ 7.

Previous rules (e.g. Decide, UnitPropagate) and |= (propositional
entailment) treat syntactically distinct atoms as distinct

New rules involve |=T (entailment in theory T)

|=T is more general.
E.g. |=T x ≤ 2 ∨ x ≥ 1 but 6|= x ≤ 2 ∨ x ≥ 1

27 / 34

Theory learning
T -Learn

M ‖ F =⇒ M ‖ F ,C if


each atom of C occurs in
F or in M,
F |=T C

I One use is for catching when M is inconsistent from T point
of view.
I Say {l1, . . . , ln} ⊆ M such that F |=T (l1 ∧ · · · ∧ ln)⇒ false
I Then add C = ¬l1 ∨ · · · ∨ ¬ln
I As C is conflicting, the Backjump or Fail rule is enabled
I Theory solvers can identify unsat cores, small subsets of literals

sufficient for creating a conflicting clause

I Frequency of checks F |=T C needs careful regulation, as cost
might be far higher than basic DPLL steps.

I Given size of F often just check |=T C . In this case C is
called a theory lemma.

28 / 34

Theory propagation

Guiding growth of M rather than just detecting when it is
T -inconsistent.

TheoryPropagate

M ‖ F =⇒ M l ‖ F if

{
M |=T l ,
l or ¬l occurs in F
l is undefined in M

I If applied well, can dramatically increase performance

I Worth applying exhaustively in some cases before resorting to
Decide

29 / 34

Integration of SAT and theory solvers

Further new rules T-Backjump and T-Forget which generalise
Backjump and Forget are also needed.

Use of theory-sensitive rules rules requires close integration of SAT
and theory solvers

I SAT solvers need modification to be able to call out to theory
solvers

I Useful to have theory solvers incremental, able to be rerun
efficiently when input is some small increment on previous
input
I Also theory solvers need to support efficient retraction of

blocks of input to cope with backjumping

30 / 34

Handling multiple theories
Consider formula F mixing theories of linear real arithmetic and
uninterpreted functions:

f (x1, 0) ≥ x3 ∧ f (x2, 0) ≤ x3 ∧
x1 ≥ x2 ∧ x2 ≥ x2 ∧

x3 − f (x1, 0) ≥ 1

The popular Nelson-Oppen combination procedure involves first
purifying, adding additional variables and creating an equisatisfiable
formula with each atom over just one of the theories.

Formula F above is equisatisfiable with F1 ∧ F2, where

F1 = a1 ≥ x3 ∧ a2 ≤ x3 ∧ x1 ≥ x2 ∧ x2 ≥ x1 ∧
x3 − a1 ≥ 1 ∧ a0 = 0

F2 = a1 = f (x1, a0) ∧ a2 = f (x2, a0)

F1 just involves linear real arithmetic and F2 just involves an
uninterpreted function

31 / 34

Nelson-Oppen example

Separate theory solvers can work on F1 and F2, exchanging
equalities

i 1 2
R arith EUF

Original Fi a1 ≥ x3 a1 = f (x1, a0)
a2 ≤ x3 a2 = f (x2, a0)
x1 ≥ x2
x2 ≥ x1
x3 − a1 ≥ 1
a0 = 0

Deduced x1 = x2(∗) x1 = x2
atoms a1 = a2 a1 = a2(∗)

a1 = x3(∗)
false(∗)

The (∗) marks indicate when inference is in the respective theory

32 / 34

Nelson-Oppen
The basic Nelson-Oppen procedure relies on each theory T being
combined being convex:

For any set of literals L, if L |=T s1 = t1 ∨ · · · ∨ sn = tn then
L |=T si = ti for some i .

I Linear real arithmetic and EUF (Equality and Uninterpreted
Functions) are convex.

I Linear integer arithmetic and bit-vector theories are not.

If L is {0 ≤ x , x ≤ 1}, then L |=Z x = 0 ∨ x = 1, but
L 6|=Z x = 0 and L 6|=Z x = 1

Extensions of Nelson-Oppen can handle a number of non-convex
theories.

In general, a combination of decidable theories might be
undecidable

33 / 34

Further reading

1. Solving SAT and SAT Modulo Theories: From an Abstract
Davis–Putnam–Logemann–Loveland Procedure to DPLL(T)
Robert Neiuwenhuis, Albert Oliveras, Cesare Tinelli. Journal
of the ACM. 53(6):937-977, 2006

Main source for Abstract DPLL approach adopted in slides

2. Slides and videos from the 2012 SAT/SMT Summer School

Tinelli’s presentation uses refined version of Abstract DPLL

3. SAT/SMT/AR/CP Summer Schools, 2011-2022

See later schools for an introduction to recent work and
applications.

4. Decision Procedures: An Algorithmic Point of View. D
Kroening, O. Strichman. 2nd Ed. 2016. Springer Nature.
Online from Learn Resource List.

Additional source for slides. Does not do Abstract DPLL.
Good reference for recent work.

34 / 34

https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1145/1217856.1217859
https://es-static.fbk.eu/events/satsmtschool12/
https://sat-smt-ar-school.gitlab.io/www/

