Week 5: Study Design

Monday lecture Uta Hinrichs & Tara Capel

midsemester feedback

- Please fill out the quick survey by Oct. 17
- What should we start doing?
- What should we stop doing?
- What should we continue doing?
- https://forms.office.com/e/6ijiRaRBh9

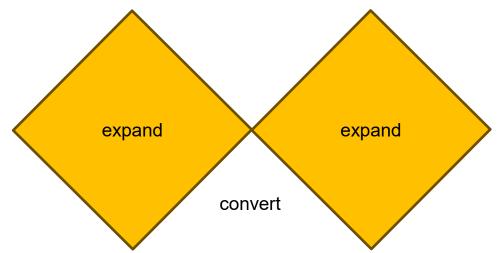
today

- Assignment 2: (Re)Design & Evaluation Design
- Study design re-cap & examples

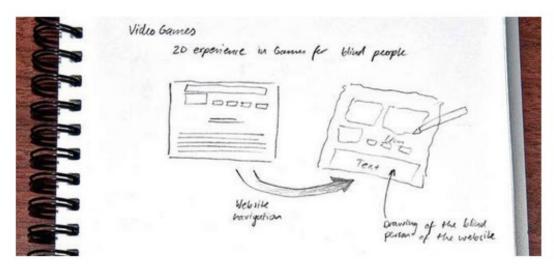
Assignment 02: (Re)design & evaluation design [group work; due Nov. 28]

what's involved

- 1. Redesign the interactive system from assignment 1, based on
 - Your heuristic evaluation results and/or
 - Any additional ideas you may have
 - → A design mock-up created in Figma
- 2. Design a user study of your redesign
 - → A description of your study design


- 1. Re-visit the results of your heuristic evaluation
 - What usability issues would you like to address as part of your re-design cycle, and why?
 - Do you want to re-design specific features, or do you have bigger ideas to re-design the whole system or larger parts of the system?
 - How can you transfer usability issues into possible design goals?
 - What are the interests of individual group members for this assignment?
 - → Discuss these questions in your group

- 1. Re-visit the results of your heuristic evaluation
- 2. Develop a persona in order to
 - Ground design goals in concrete considerations of the people you are redesigning the system for, and
 - Explore your design goals and the current problems of the system you aim at addressing
 - → Re-visit videos & lectures from Week 3

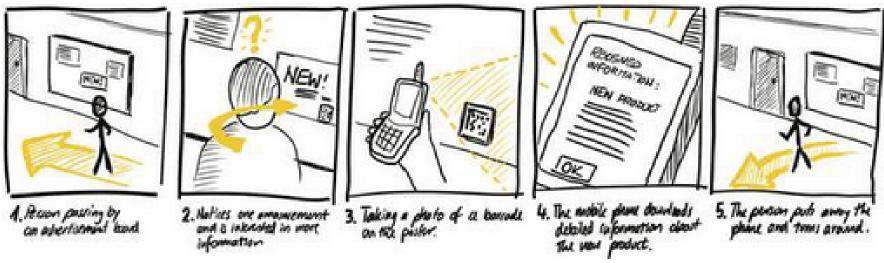

- 1. Re-visit the results of your heuristic evaluation
- 2. Develop a persona
- 3. Define the design goal(s) of your re-design
 - 1 design goal can be fine; more than 3 is probably too much
 - A design goal should cover the right level of detail
 - "Improve the usability of the system" too broad!
 - "Re-design button X to better communicate its functionality too low-level!
 - Better: "Improve the process by experts of creating a new mindmap"

- 1. Re-visit the results of your heuristic evaluation
- 2. Develop a persona
- 3. Define the design goal(s) of your re-design
- 4. Define the tasks you would like to address as part of your re-design
 - Might be the same that they system is already trying to support
 - They may need to be adapted, based on your findings or the challenges you have identified
 - Related workflows may need to be improved
 - Might be new tasks that you think would improve the system
 - Tasks should link to design goals

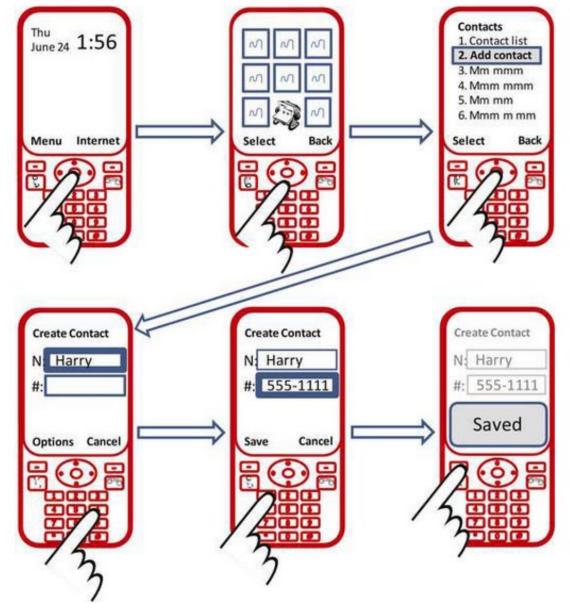
- 1. Re-visit the results of your heuristic evaluation
- 2. Develop a persona
- 3. Define the design goal(s) of your re-design
- 4. Define the tasks you would like to address as part of your re-design
- 5. Ideation & design iteration
 - Brainstorm and sketch multiple ideas that might help address your design goals
 - Iteratively merge and revise ideas to develop these further

- 1. Re-visit the results of your heuristic evaluation
- Develop a persona
- 3. Define the design goal(s) of your re-design
- 4. Define the tasks you would like to address as part of your re-design
- 5. Ideation & design iteration
 - Brainstorm and sketch multiple ideas that might help address your design goals
 - Iteratively merge and revise ideas to develop these further

on generating ideas

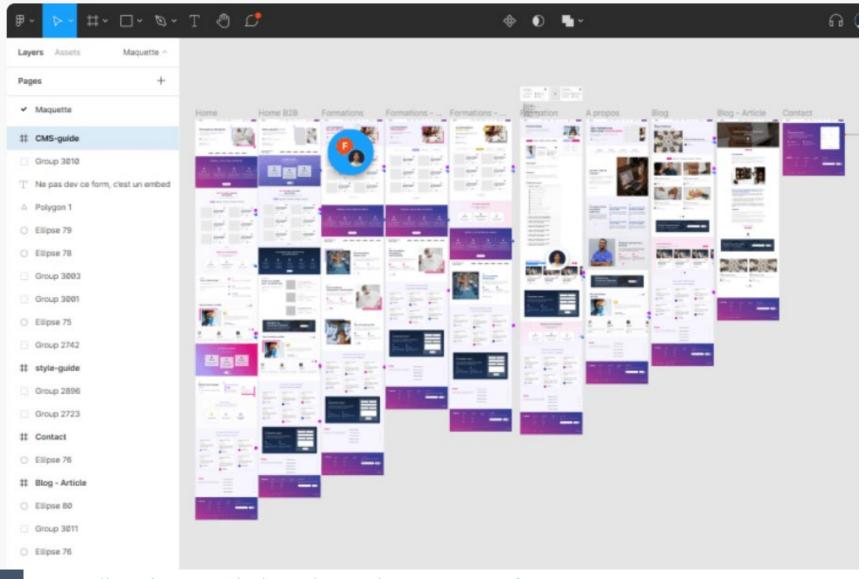

10x10 method

- State your design challenge, for example, the usability issue you would like to solve
- Generate 10 or more different design concepts of a feature that addresses this challenge
 - Be as creative and diverse as possible
 - Don't judge the merit of these concepts
 - Quickly generate as many concepts as possible; quantity over quality
- Reduce the number of design concepts
- Choose the most promising concepts as a starting point
- Produce 10 details and/or variations of a particular design concept
- Present & discuss


sketching

- Sketches are there to communicate ideas quickly
- Sketches are not drawings!
- Sketches do not have to be pretty!
- Sketches can be done using pen and paper, or whatever tool gets the job done quickly

storyboard ing


sketching interactions

Sketching User Experiences. The Workbook. Greenberg, Carpendale, Buxton, Marquard. p. 122

- 1. Re-visit the results of your heuristic evaluation
- 2. Develop a persona
- 3. Define the design goal(s) of your re-design
- 4. Define the tasks you would like to address as part of your re-design
- 5. Ideation & design iteration
- 6. Design Mock-up
 - The design concept: the design idea and how someone could interact with it
 - We do NOT expect and implemented prototype!
 - The mock-up should include those parts (pages, features, interactive elements) of the interactive system you choose to redesign
 - Not every single element has to be interactive, but your mock-up should be able to represent interactive features that are key for your redesign

final mock-up

https://help.figma.com/hc/en-us/articles/360040314193-Guide-to-prototyping-in-Figma

getting started with Figma

- Sign up for Figma for Education (free for students)
 - https://www.figma.com/education/
- Figma Learn contains many useful guides
 - https://help.figma.com/hc/en-us/categories/360002042553
- Getting started
 - https://help.figma.com/hc/en-us/categories/360002051613-Get-started
- Guide to prototyping in Figma
 - https://help.figma.com/hc/en-us/articles/360040314193 Guide-to-prototyping-in-Figma

what's involved

- 1. Redesign the interactive system from assignment 1, based on
 - Your heuristic evaluation results and/or
 - Any additional ideas you may have
 - → A design mock-up created in Figma
- 2. Design a user study of your redesign
 - → A description of your study design

Design a user study of your re-designed system

Study question(s)

A definition of the question(s) you aim to answer with your user study.

Study method

A description of the study methods you will apply to answer your question(s).

Study participants

A brief characterization of your participants, and how might you recruit them. This
may also include considerations of how many participants you may need.

Example study tasks

 A description of study tasks you will ask participants to complete as part of your study.

Data collection

A description of what data you are planning to collect and how.

Data analysis

An outline of how you are planning to analyse your study data.

Potential limitations

A brief reflection on the potential limitations of your study method

deliverables

- Report (one submission per group)
 - Description of the system in focus
 - Design goals of your re-design
 - Design process
 - Description & illustration of your re-design
 - Link to Figma prototype
 - Description of your study design
 - Reflection on the collaborative process
- Grading of your fellow group members (individual submission; separate on Gradescope)
 - Average grade will influence 5% of the overall assignment grade

some notes

- It makes sense to keep focusing on the system you evaluated as part of Assignment 1. However, if there is a problem with this, do let us know.
- We do not expect you to program a fully functioning prototype! We are looking for a mock-up!
- Do not run the study you have designed!
 We don't have Ethics for this!
- Please reach out to us, if you are worried about the group work aspect.

re-cap study design

expert evaluation: pros & cons (Heuristic evaluation & Cognitive Walkthrough)

Pros

- No need to apply for ethics, recruit study participants
- Finding potentially expensive problems at minimal expense

Cons

- Heuristics, in particular, represent "rules of thumb", but they may not apply to all systems and contexts and all problems that may occur
- Experts are not the same as real-world users; some issues may be missed

Usability in itself is not a design requirement!

Usability depends on

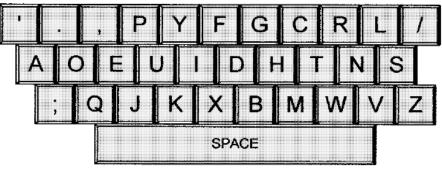
- The design of system features
- The people who will use the system
- The goals/tasks that people have/will want to accomplish
- The environment/context in which the system exists
- → When designing usability studies, we need to define what we mean by "usability"

Usability Testing

- Define design requirements
 - What problems should the system help solve?
- Define specific usability goals (define what "usability" means in our context)
 - What should the system enable people to do?
 - How should people feel after using the system
 - How is interaction with the system supported?

→ All requirements and goals need to be quite specific, so we can understand whether they have been fulfilled or not.

Usability Goals


- Task completion time
 - People can accomplish a task in X minutes
 - People accomplish a task faster using System A than System B
- Error rate
 - People can accomplish a task with no major errors
 - People can accomplish a task with less errors using System A compared to System B
- People can accomplish tasks using the system without instructions (→ walk-up-and-use)
- People can accomplish specific tasks and are satisfied with their results
- People use the system more frequently

Lab studies


- Observation
- Think aloud
- Focus groups
- Interviews
- Quantitative testing (efficiency & error rate)
- Comparative studies (A/B testing)

Lab study: A/B testing

- Research question:
 - Which soft keyboard is quicker for text entry?
- Goal:
 - Make text entry on soft keyboards more efficient
- Study design
 - Within subjects: participants use both keywords
 - Typing speed and error rate are measured
- Why this method?
 - Control factors that may influence typing speed and error rate as much as possible, leading to generalizable results

Dvorak layout

Fitaly layout

Lab study: observation

- Research question:
 - How do small group collaborate on tabletop displays using dynamic interface elements?
- Goal:
 - Better understand collaborative dynamics around tabletop displays and how to support these.
- Study design
 - Groups of 2
 - Open-ended storytelling task
 - Video recording & interviews
- Why this method?
 - Be able to observe how collaboration unfolds in open-ended tasks

http://www.utahinrichs.de/Projects/InterfaceCurrents

Lab study: focus group

Research question:

— How can we make visitors and cohabitants aware of smart speaker without overstepping social boundaries?

Goal:

 Gain a better understanding of how smart speakers should be introduced (by whom, how and when)

Study design

- Share scenarios with participants
- Let them sketch/act out (on paper) how they would introduce the smart speaker
- Discuss their outcomes and what influenced these

Why this method?

Get participants imagine and discuss different scenarios

Lab study: testing a museum exhibit prototype

- Research question:
 - How do potential museum visitors (families) interact with a novel museum exhibit?
- Goal:
 - Improve the design and usability of the exhibit
- Study design
 - Invite families to interact to freely interact with the exhibit in a lab environment
 - Interview them for feedback
- Why this method?

context matters

E. Hornecker and E. Nicols. Towards the Wild: Evaluating museum installations in semi-realistic situations. *Re-thinking Technology in Museums 2011 Conference*. 2011. http://www.ehornecker.de/Papers/HorneckerNicolFinal.pdf

Lab studies

- Observation
- Think aloud
- Focus groups
- Interviews
- Quantitative testing (efficiency & error rate)
- Comparative studies (A/B testing)

Pros

- Controlled environment
- Less distractions
- Participants more focused and attentive
- Use of specialized equipment to gather data is possible (e.g., eye tracking, video and voice recording)
- High generalizability (if the study is designed well)

Cons

- Relatively small participant numbers
- Unrealistic setting
- Results may not be "ecologically valid"; they may not apply to real-world settings

Online study

- Survey
- Quantitative testing (efficiency & error rate)
- Comparative studies (A/B testing)
- Automatic logging of interactions

Online survey: data physicalization & sustainability

Research question:

 How do data physicalization designers and artist approach physicalization projects and reflect on sustainability?

Goal:

 Provide a comprehensive perspective on sustainability in Data Physicalization

Study design:

- Online survey targeting the community of data physicalization designers
- Surevey included questions regarding the disposal, reuse, and material selection as part of designers' physicalization practice

Why this method?

Expand the pool of participants

Online study

- Survey
- Quantitative testing (efficiency & error rate)
- Comparative studies (A/B testing)
- Automatic logging of interactions

Pros

- Time efficient (for the researcher)
- Large and/or diverse participant sample

Cons

- No follow-up questions possible (typically)
- Uncontrolled environment (we don't know the conditions under which the tasks are accomplished)

In-the-wild study (field study)

study types

in the wild / field study

People's home

Airport control room

Health environments

Museum spaces

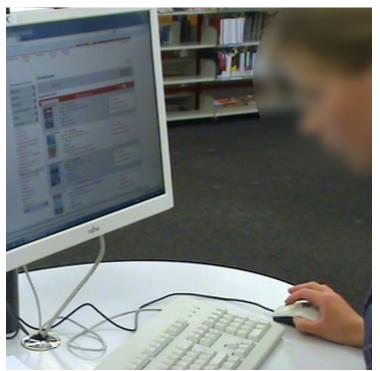
In-the-wild study (field study)

- Observation
- Think aloud
- Focus groups
- Interviews
- Comparative studies (A/B testing)
- Study is conducted in a real-world environment
- Participants are not provided tasks, but act and interact as they normally would
- Typically, participants are not recruited in advance
- Ethnographic approach

In-the-wild study (field study)

- Observation
- Think aloud
- Focus groups
- Interviews
- Comparative studies (A/B testing)

Pros


- Observation of real-world behaviours is possible
- High ecological validity

Cons

- Uncontrolled environment (but we can see the conditions under which tasks are accomplished
- You typically cannot give tasks to participants they do what they want
- Lots of "noise" in the collected data; messy data
- Less generalizability

Controlled in-the-wild study

- Recruiting participants into a study in a realworld environment
- Mix of lab study and in-the-wild study aspects

U. Hinrichs, S Butscher, J. Müller, H. Reiterer. <u>Diving in at the Deep End: The Value of Alternative</u> <u>In-Situ Approaches for Systematic Library Search</u>. In *Proc. of CHI*, pages 4634-4646, 2016

mixedmethod approaches

- Mixing different methods of data collection
 - Quantitative
 - Task efficiency & error rate
 - Likert-scale questionnaires (ratings from 1-5)
 - Qualitative
 - Interviews
 - Observation
 - Focus group
 - Qualitative questionnaires
- Mixing different study methods
 - Observing people in the real world plus recruiting participants into the real-world environment of interest
 - Interviewing people plus conducting a survey
 - Running a lab experiment plus conducting an in-the-wild study

next steps

- Hands-on discussion of study design
- Wednesday 14:10 15:00;

G.07 Meadows Lecture Theatre - Doorway 4, MST