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1 Introduction

Week 4 introduces the concepts of regression in the context of machine learning.
Regression is a statistical measure to compute the strength of relationship be-
tween the observed (independent) variable and the resultant (dependent) vari-
able. Following that, we will start with Linear Regression which is used to
model linear parametric models to determine relation in the form y = mx +
c. Finally, we will study about Logistic Regression which is used for classifi-
cation of linearly separable data. Simple version of Logistic Regression is used
for classification between 2 categories, however it can be extended to support
multi-category classification.

A brief refresher on Bayesian concepts can be found in this article.

2 Linear Regression

• For understanding the mathematics behind linear regression, use Goodfel-
low et al. [2016] Pg 106. It uses the formula 1
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and then takes the differential over the weights to find the minima and
solves for the weights.

• To go through the method of finding weights when L2 regularisation is
used in linear regression, you might want to use Bishop [2006] Pg 144.

• It might also be worthwhile looking over linear algebra methods to solve
matrix equations using LU Decomposition Strang [2016] Pg 97 and Cholesky
Decomposition Deisenroth et al. [2019] Pg 114 and understanding when
and why either might be used. For a quick introduction to Cholesky De-
composition, you can use this article. An insight into the use of Cholesky
Decomposition for numerically stable computations to compute the weights
for MLE can be found in Murphy [2012] Pg 229.

• Good resource for understanding basis functions is provided in the MLPR
notes for Week 1B Section 2.2

• What is One Hot Encoding?
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For categorical data, numerical stamps like 1, 2, 3... can be used but the
numbers have an innate relationship between them (2 is two times 1, 3
is three times as 1). Algorithms may be able to harness this relationship
and learn latent properties which were not meant to be learnt.

Hence, we go for one-hot encoding where the categories are represented as
booleans (yes/no). So, categories will be represented as:

– 1 : 100

– 2 : 010

– 3 : 001

So on, and so forth.

• Why use Radial Basis Functions?

– For X.W , we get a linear response along the preferred direction W⃗ .

– For RBF [exp(−|x−µ|2)], we get local units and can use use the dis-
tance measure to compute degree of match. Used for locally weighted
systems (LOESS).

Read more about how RBFs can be used in computational networks, use
this article.

You can delve deeper into RBFs using this article Buhmann [2010].

3 Logistic Regression

• Classification problems can be resolved in three approaches as noted below:

– Generative Models which models the distribution of the outputs and
inputs.

– Discriminative Models which models the posterior probability di-
rectly.

– Using discriminant functions to map input directly to class.

Further details can be found in Bishop [2006] Section 1.5.4.

• Logistic Regression is an extension of Linear Regression to allow for clas-
sification. We need to convert the continuous output of the Linear para-
metric model to discrete values representing classes.

• One of the key elements of classification is the ability to convert results
from linear parametric model [Section 2] to discrete values. Function
which do this are called Discriminant Functions. To read more about
them, refer to Bishop [2006] Pg 181.
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• A brief introduction to what a decision boundary means in the mathe-
matical sense and how logistic regression is related to linear regression is
provided in the book Barber [2012] Pg 363.

• A good resource to understand the math behind the cost function (Log
Likelihood) is provided in the MLPR notes for Week 6B Sections 2 and 3.

• How to fit Logistic Regression model?

There are multiple methods to fit logistic regression models, the most
popular ones being:

– Maximum Likelihood Estimation

– Gradient Descent

Both these methods and many others are discussed in details which you
can read about in Murphy [2012] Pg 249.

• To read about multi-class classification, you can refer to Barber [2012]
Section 17.4.4 (Pg 372).
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