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1 Introduction

Week 5 introduces the concepts of Optimisation and Regularisation of machine
learning models and why they are essential. Optimisation deals with the ’how’
the machine learning model learns, while Regularisation aims to solve the over-
fitting problem.

Along side that, we will also take a look at one of the most popular machine
learning models - Support Vector Machines (SVMs). As stated by Andrew NG
in this article, SVMs are among the best ”off-the-shelf” supervised learning
algorithm in use.

2 Optimisation and Regularisation

2.1 Optimisation

• Optimisation is the process of using an error or cost metric to find the
most optimal solution to a given problem. The process of optimisation
can either be arithmetic, or it can be computed stochastically.

• In Machine Learning, we typically use an optimisation process in order
to solve the problem of which model parameter assignments make our
model best fit the training data (indicated by which parameter assign-
ment minimises our error metric). The problem is known as model fitting.
Of course there is more nuance here, as we do not typically want the model
to perfectly fit our training data (consider Generalisation, and Regularisa-
tion below). To read more about the different methods for model fitting,
Murphy [2012] Section 8.3 gives a brief introduction to various methods.

• An error manifold is the space of all possible values to your objective
function in the optimisation problem (assuming you have a criterion that
needs to be minimised, such as a metric of how wrong your predictions
with the model are). Given a specific set of samples on which we are
comparing, the error manifold will depend on the different possible values
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our model parameters can take. A brief explanation of error manifolds is
provided in this Jupyter Notebook.

• Cost function, loss function, error function, and objective function are
synonyms, though the first 3 imply that we are dealing with a minimisa-
tion problem, while objective function is more general. Typically we are
looking to define a cost function which we need to minimise. Refer to
Goodfellow et al. [2016] Section 4.3 to understand the basic idea behind
convex optimisation.

• To understand and know more about different loss functions in brevity, you
can refer to this article. Also, try understanding how each loss function
is suited to classification and regression problems. Generally, you might
want to introduce further terms to your loss function; this is an engineering
problem in and of itself (for example, see Regularisation below).

• Gradient descent has been well explained in Goodfellow et al. [2016] Sec-
tion 5.2.4 and the key equation behind gradient based optimisation is given
in Equation 5.41.

• Learning rate is a hard parameter to tune, and Murphy [2012] Section
8.3.2 on Page 247 aims to explain how it works.

• – Batch gradient descent computes the gradient using the whole dataset.

– Stochastic gradient descent (SGD) computes the gradient using a
single sample randomly chosen over each epoch from the dataset.

– Best of both worlds, is to use a mini-batch (set of samples chosen
randomly from the dataset) and perform Batch descent over that
mini-batch.

2.2 Regularisation

• The basic idea of regularisation is well articulated in Barber [2012] where
he explains it as, ”For most purposes, our interest is not just to find
the function that best fits the train data but one that will generalise
well. To control the complexity of the fitted function we may add an
extra regularising term to the train error to penalise rapid changes in the
output”.

• To go through the method of finding weights when L2 regularisation is
used in linear regression, you might want to use Bishop [2006] Pg 144.
The equations is w = (ΦT .Φ+ λ.I)−1.ΦT .y. This is Ridge Regression.

• A clear explanation of L2 Regularisation (Ridge Regression) is given in
Goodfellow et al. [2016] Section 7.1.1.

• Additionally, another important form of regularisation is L1 regularisation
or what is known as Lasso Regression. It is useful to find sparse matrices
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of weights. lease use Goodfellow et al. [2016] Section 7.1.2 to read how it
works.

• To have a simplified understanding of L1 regularisation, this article is
quite useful.

3 Support Vector Machines 1

• The intuition is to learn a decision boundary (hyperplane) to separate
classes of data such that margin between the training points on either
classes is maximised.

• Intuition behind SVM:
For a binary classification problem with 2 classes (say, +1 and -1), we
need to:

– Predict +1 iff wTx+ b ⩾ 0
If wTx+ b ≫ 0, confidence of class = +1 is very high.

– Predict -1 iff wTx+ b < 0
If wTx+ b ≪ 0, confidence of class = -1 is very high.

• Derivation of Geometric Margin of SVM:
Let us consider the distance
between the training sample
X and the decision boundary
wTx + b = 0 as γ. Since the
weight vector w is orthogonal to
the decision boundary, the pro-
jection of the point X on the de-
cision boundary can be written
as (x−γ. w

∥w∥ ). Let this point be

called X̂.
Therefore, if X̂ is put in the
equation of the decision bound-
ary, we should have wT X̂ + b = 0. Therefore, we get the equation:

wT (x− γ.
w

∥w∥
) + b = 0 (1)

Solving Equation 1 for γ, we get:

γ =
w

∥w∥
X̂ +

b

∥w∥

This is called the geometric margin of point X with respect to the decision
boundary. The division of the hyperplane by the Euclidean norm of the
weight vector is to ensure scaling the weights does not affect the margin.
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• To understand why weights are always orthogonal to the decision bound-
ary, please take a look at this article.

• To understand how to the math for maximising the margin works, please
refer to Barber [2012] Section 17.5.1 and for an more in-depth explanation
please refer to, Bishop [2006] Section 7.1.

4 Support Vector Machines 2

Part 2 continues with the concepts of Support Vector Machines introducing over-
lapping class distributions and how to modify the algorithm to deal with them
and make them more robust. We will also deal with the usage of kernels to cre-
ate non-linear SVM classifiers. This article provides a high level understanding
of the importance of kernels in the field of machine learning

• Derivation of optimal parameters using Lagrange multipliers:

g(x) = |w|2 ⇒ dg
dw = 2|w|

f(x) =
∑

{yi(wTxi + w0)− 1} ⇒ df
dw =

∑
yixi

Using Lagrange Multiplier, we can say:
g(x) = λf(x)
⇒ 2|w| =

∑
λiyixi

⇒ |w| =
∑

αiyixi assuming αi =
λi
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This concept has also been explained thoroughly in Bishop [2006]. Please
refer to Section 7.1 Pg 328.

• For linearly non-separable data, creating a solution which gives an exact
separation will not be generalisable. This requires the need to allow some
data points to be misclassified. Please refer to Bishop [2006] Section 7.1.1
for more details on this.

• For a quicker introduction to the use of ξn for making SVMs more robust,
please refer to Section 17.5.1 from Barber [2012].

• To understand the influence of the parameter C in SVM classification, this
StackOverflow article provides a very good explanation.

• Following the 2-Norm Soft-margin subsection under Section 17.5.1 from
Barber [2012], it will be clear that the optimisation problem requires only
the inner product. A simpler derivation for the optimisation equation is
provided here:
f(x) = 1

2w
Tw and g(x) = yn(w

Txn+w0)− 1 Hence, using Lagrange mul-
tipliers, we can say that the optimisation problem is:
L(w,w0) = f(x) +

∑
αngn(w,w0)

This implies,
dL
dw = w −

∑
n αnynxn = 0 and dL

dw0
= 0−

∑
n αnyn = 0
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Filling in the values in the original optimisation equation, we get:
L(w,w0) =

∑
n αn− 1

2w
Tw⇒ L(w,w0) =

∑
n αn− 1

2

∑
n,m αmαnynx

T
nxmym

Hence, the optimisation equation depends on the xT
nxm which is basi-

cally an inner product. If x is replaces with the basis function, we get
ϕ(xn)

Tϕ(xm). This can be represented as K(xn, xm) and are called ker-
nel functions. Kernel function basically calculate the inner product in the
transformed space.

• The conditions to determine which functions can be considered as Kernel
functions is defined using Mercer’s theorem.
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