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1 Introduction

Week 7 introduces 2 unsupervised learning methods for clustering of data.
The first method being explored in K-means which aims to cluster data into K
groups by minimizing a criterion known as inertia. K is a parameter that needs
to be chosen as a parameter before execution by the user.
Along side that, we will also explore Gaussian mixture models (GMMs) which
are a generalisation of K-means to incorporate covariance information Pedregosa
et al. [2011]. This model uses a combination of Gaussian distributions to model
the data.

2 K-Means Clustering

• Why is it called K-Means?
In K-Means the term K refers to the number of clusters that need to be
identified; and, means refers to the process of averaging of data to find
the centroid of each cluster.

• Monothetic and Polythetic Clustering: In a monothetic scheme, clus-
ter membership is based on the presence or absence of a single character-
istic. Polythetic schemes use more than one characteristic. For example,
classifying people solely on the basis of their gender is a monothetic clas-
sification, but if both gender and handedness (left or right handed) are
used, the classification is polythetic.

• To read about hard and soft clustering, please refer to this article.

• The objective of K-means as defined in Bishop [2006] Section 9.1 is the

minimisation of the cost function J where J =
∑N

n=1

∑K
k=1 rn,k||xn−µk||2

such that, rn,k denotes if point n belongs to cluster k and ||xn − µk||2 is
the squared error.

• To understand the K-means algorithm, please refer to Wu et al. [2008]
Section 2.1. The basic steps can be elucidated as:
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https://medium.com/fintechexplained/machine-learning-hard-vs-soft-clustering-dc92710936af


1. Specify number of clusters K.

2. Initialize centroids by first shuffling the dataset and then randomly
selecting K data points for the centroids without replacement.

3. Keep iterating until there is no change to the centroids or maximum
iterations has been reached.

• An improvement on the basic K-means algorithm is to introduce a kernel
on top of the data to project it into a high-dimensional space Dhillon et al.
[2004]. Although the boundaries will be linear in the high-dimensional
space, on projecting back to the lower dimensions, it becomes non-linear.

• To read about the limitations of K-means, please refer to Wu et al. [2008]
Section 2.2.

• To get a quick overview of the K-means algorithm, please refer to Barber
[2012] Section 20.3.5. [Requires an understanding of Expectation Maxi-
mization]

3 Gaussian Mixture Models

• This topic requires an intuition about Maximum Likelihood Estimation.
To get a quick refresher, please refer to this article.

• What is Expectation-Maximization?
Expectation maximization is an iterative process of improving the proba-
bility of a model to predict if an observation belongs to a specific distri-
bution in the presence of latent variables.

– E-Step ⇒ Estimate the missing variables in the dataset

– M-Step ⇒ Maximize the parameters of the model in the presence of
the data

Maximum Likelihood estimate the same probability in the absence of la-
tent variables.

• This can be used good starter video to understand the intuition about
Expectation-Maximization (EM).

• To get a deeper understanding of the mathematics behind the general EM
algorithm, please refer to Bishop [2006] Section 9.4. Another approach to
EM, based on mathematical derivations, is provided in Section 2 of this
document.

• Basic Representation of Mixture Models is provided in Figure 1

• An intuitive concept of Gaussian Mixture model is provided in this article
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https://towardsdatascience.com/probability-concepts-explained-maximum-likelihood-estimation-c7b4342fdbb1
https://www.youtube.com/watch?v=QQJHsKfNqG8
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https://medium.com/clustering-with-gaussian-mixture-model/clustering-with-gaussian-mixture-model-c695b6cd60da


Figure 1: These are the basic steps that need to be followed to build a Mixture
Model

• Section 2 and 3 from this document provides an elaborate explanation of
Gaussian Mixture models and Expectation Maximization.

• A thorough and clear explanation of Gaussian Mixture Models (albeit,
slightly lengthy) is also provided in Bishop [2006] Section 9.2.

4 Comparison between K-means and GMM

Criterion K-Means GMM

Convergence Faster than GMM Slower than K-Means
Speed Computationally less

intensive
Computationally in-
tensive

Initialization Random Initialisation Use K-means to deter-
mine the means of the
Gaussian

Output Single hard assignment
to clusters

Probability distribu-
tion over the cluster
assignment

Table 1: This table provides a comparative analysis of K-Means clustering and
Gaussian Mixture Models over 4 criteria
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