1 Introduction

Week 3 of the course focuses on the generalisation of models over varied data and the evaluation of models. This involves using techniques to improve the overall reliability of our models and assessing the performance.

2 Generalisation & Evaluation

- Generalisation refers to the reliability of the model’s outcomes. Simply put, the more generalised a model is, the more it can correctly predict unseen data. To understand the concept of generalisability, the bias-variance trade-off is a key concept that needs to be clarified. You can refer to this article for a quick refresher. Hastie et al. [2009] Chapter 7, Sections 7.2 and 7.3 provides a good explanation of the bias-variance relationship.

- **Over-fitting & Under-fitting**: When a model is not well generalised, it is implicitly understood that the model is either over-fitted to the training data, or under-fitted to the problem. A visual representation is provided in Figure 1
 - Over-fitting: Fits very well to the training data, but performs poorly on unseen data. Usually happens when the model has high variance and low bias.
 - Under-fitting: Cannot fit well to the training data itself. Usually happens when the model has high bias and low variance.

- The dataset used for machine learning problems is split for 3 purposes:
 - Training set: Used to construct the model.
 - Validation set: Used to determine the hyperparameters of the model.
 - Test set: Used to estimate the generalisability of the model.
Figure 1: The left plot shows (in red) how an under-fitted model would perform, and the right plot shows (in red) how an over-fitted model would perform. The line in blue is the representation of the function.

Please refer to Hastie et al. [2009] Chapter 7, Page 222 to read about dataset splitting. In case of problems, which are not data-rich, we use cross validation which you can read about Hastie et al. [2009] Section 7.10.

• Model evaluation is done in the form of metrics. To know more about such metrics, you can refer to this article.

• Reading List:
 Goodfellow et al. [2016] pp. 105 - 117
 Witten et al. [2011] pp. 31 - 35

References
