
Introduction to Databases
(INFR10080)

(Database Constraints)

Instructor: Yang Cao

(Fall 2025)

Changelog

v25.0 Initial version

1/16

Integrity constraints

Databases often required to satisfy some integrity constraints

Determine what tuples can be stored in the database

Instances that satisfy the constraints are called legal

Common constraints: keys and foreign keys

These are special cases of more general constraints

• Functional dependencies

• Inclusion dependencies

2/16

Functional dependencies (FDs)

Constraints of the form X → Y, where X, Y are sets of attributes

Semantics (on sets)
A relation R satisfies X → Y if for every two tuples t1, t2 ∈ R

πX(t1) = πX(t2) =⇒ πY(t1) = πY(t2)

Intuition: The values for the X attributes
determine the values for the Y attributes

Trivial FDs: X → Y where Y ⊆ X

3/16

Examples of FDs

Employee Department Manager

John Finance Smith
Mary HR Taylor
Susan HR Taylor
John Sales Smith

Which of the following FDs would the above relation satisfy?

• Department → Manager Yes

• Employee → Department No

• Employee, Manager → Department No

• Manager → Department No

4/16

Keys

A set of attributes X is a key for relation R if for every t1, t2 ∈ R

πX(t1) = πX(t2) =⇒ t1 = t2

A key for a table is a set of attributes that uniquely identify a row

=⇒ no two rows can have the same values for key attributes

Key constraints: special case of FDs X → Y
where Y is the whole set of attributes of a relation

5/16

Inclusion dependencies (INDs)

Constraints of the form R[X] ⊆ S[Y]
where R, S are relations and X, Y are sequences of attributes

Semantics
R and S satisfy R[X] ⊆ S[Y] if

for every t1 ∈ R there exists t2 ∈ S such that πX(t1) = πY(t2)

Important: the projection must respect the attributes order

INDs are referential constraints: link the contents of one table
with the contents of another table

A foreign key constraint is the conjunction of two constraints:

• R[X] ⊆ S[Y] (an IND)

• Y is key for S (a key constraint)

6/16

Examples of INDs

Employees

Name Dep

John Finance
Mary HR
John HR
Linda Finance
Susan Sales

Departments

Name Mgr

Finance John
HR Mary
Sales Linda

Which of the following INDs would the above relations satisfy?

• Employees[Dep] ⊆ Departments[Name] Yes

• Employees[Name] ⊆ Departments[Mgr] No

• Departments[Mgr] ⊆ Employees[Name] Yes

• Departments[Mgr,Name] ⊆ Employees[Name,Dep] No

7/16

Basic SQL constraints

NOT NULL to disallow null values

UNIQUE to declare keys

PRIMARY KEY key + not null

FOREIGN KEY to reference attributes in other tables

NULL values are ignored when checking constraints
except for NOT NULL and PRIMARY KEY

8/16

Not Null

Declaring an attribute as NOT NULL
disallows null values for that attribute

CREATE TABLE Account (
accnum VARCHAR(12) NOT NULL,
branch VARCHAR(30) ,
cu s t i d VARCHAR(10) ,
ba lance NUMERIC(14 ,2) DEFAULT 0

) ;

The following insertion would fail:

INSERT INTO Account (branch , c u s t i d)
VALUES (’ London ’ , ’ cust1 ’) ;

9/16

Keys

CREATE TABLE Account (
accnum VARCHAR(12) UNIQUE,
branch VARCHAR(30) ,
cu s t i d VARCHAR(10) ,
ba lance NUMERIC(14 ,2)

) ;

The following insertion gives an error:

INSERT INTO Account VALUES
(1, ’London’, ’cust1’, 100),
(1, ’Edinburgh’, ’cust3’, 200);

The following insertion succeeds:

INSERT INTO Account VALUES
(NULL, ’London’, ’cust1’, 100),
(NULL, ’Edinburgh’, ’cust3’, 200);

10/16

Compound keys

Keys consisting of more than one attribute
must be declared using a different syntax

CREATE TABLE Movies (
m_title VARCHAR(30),
m_director VARCHAR(30),
m_year SMALLINT,
m_genre VARCHAR(30),
UNIQUE (m_title,m_year)

);

This declares the set {m_title,m_year} as a key for Movies

11/16

Primary Keys

Essentially UNIQUE + NOT NULL

CREATE TABLE Account (
accnum VARCHAR(12) PRIMARY KEY,
branch VARCHAR(30),
custid VARCHAR(10),
balance NUMERIC(14,2)

);

same as

CREATE TABLE Account (
accnum VARCHAR(12) NOT NULL UNIQUE,
branch VARCHAR(30),
custid VARCHAR(10),
balance NUMERIC(14,2)

);

12/16

Foreign keys in SQL (1)

CREATE TABLE Customer (
id VARCHAR(10) PRIMARY KEY
name VARCHAR(20),
city VARCHAR(30),
address VARCHAR(30)

);

CREATE TABLE Account (
accnum VARCHAR(12),
branch VARCHAR(30),
custid VARCHAR(10) REFERENCES Customer(id),
balance NUMERIC(14,2)

);

Every value for attribute custid in Account must appear
among the values of the key id in Customer

13/16

Foreign keys in SQL (2)

General syntax (useful for declaring compound foreign keys)

CREATE TABLE <table1> (
<attr> <type>,
...
<attr> <type>,
FOREIGN KEY (<list1>)

REFERENCES <table2>(<list2>)
);

where

• <list1> and <list2> are lists
with the same number of attributes

• attributes in <list1> are from table <table1>
• attributes in <list2> are unique in <table2>

14/16

Referential integrity and database modifications (1)

Deletion can cause problems with foreign keys

Customer ID Name

cust1 John
cust2 Mary

Account Number CustID

123456 cust1
654321 cust2

where Account.CustID is a foreign key reference to Customer.ID

What happens if one deletes (cust1,John) from Customer?

Three approaches are supported in SQL:

1. Reject the deletion operation

2. Propagate it to Account by deleting also (123456,cust1)

3. “Don’t know” approach: keep the tuple in Account,
but set CustID value to NULL

15/16

Referential integrity and database modifications (2)

All three approaches are supported in SQL

CREATE TABLE <table1> (
<attr> <type>,
...
FOREIGN KEY <list1> REFERENCES <table2>(<list2>)

<approach>
)

where <approach> can be:

1. Empty: Reject deletions from <table2> causing the FK to be violated
(this is the default when <approach> is not specified)

2. ON DELETE CASCADE: Propagate the deletion to <name>
(tuples in <table1> that violate the FK will be deleted)

3. ON DELETE SET NULL: “Don’t know” approach
(the values of the attributes in <list1>, for tuples in <name>

that violate the FK, are set to NULL)

16/16

