Introduction to Databases

(INFR10080)

(Entailment of Constraints)

Instructor: Yang Cao

(Fall 2025)

Changelog

v25.0 Initial version

Implication of constraints

A set Σ of constraints **implies** (or **entails**) a constraint ϕ if **every** instance that satisfies Σ also satisfies ϕ

Notation: $\Sigma \models \phi$

Implication problem

Given Σ and ϕ , does Σ imply ϕ ?

Important because

- We never get the list of all constraints that hold in a database
- The given constraints may look fine, but imply some bad ones
- The given constraints may look bad, but imply only good ones

2/13

Axiomatization of constraints

Set of rules (axioms) to derive constraints

Sound every derived constraint is implied

Complete every implied constraint can be derived

Sound and complete axiomatization gives a procedure ⊢ such that

$$\Sigma \models \phi$$
 if and only if $\Sigma \vdash \phi$

Notation

Attributes are denoted by A, B, C, ...

If A and B are attributes, AB denotes the set $\{A, B\}$

Sets of attributes are denoted by X, Y, Z, ...

If X and Y are sets of attributes, XY denotes their union $X \cup Y$

If *X* is a set of attributes and *A* is an attribute,

XA denotes $X \cup \{A\}$

4/13

Armstrong's axioms

Sound and complete axiomatization for FDs

Essential axioms

Reflexivity: If $Y \subseteq X$, then $X \to Y$

Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z

Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

Other axioms

Union: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$

Decomposition: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$

Closure of a set of FDs

Let Σ be a set of FDs

The closure Σ^+ of Σ is the set of all FDs implied by the FDs in Σ

Can be computed using Armstrong's axioms

Example

Closure of $\{A \rightarrow B, B \rightarrow C\}$ (blackboard)

6/13

Attribute closure

The closure $C_{\Sigma}(X)$ of a set X of attributes w.r.t. a set Σ of FDs is the set of attributes we can derive from X using the FDs in Σ (i.e., all the attributes A such that $\Sigma \vdash X \to A$)

Properties

- $X \subseteq C_{\Sigma}(X)$
- If $X \subseteq Y$, then $C_{\Sigma}(X) \subseteq C_{\Sigma}(Y)$
- $C_{\Sigma}(C_{\Sigma}(X)) = C_{\Sigma}(X)$

Solution to the implication problem:

$$\Sigma \models Y \rightarrow Z$$
 if and only if $Z \subseteq C_{\Sigma}(Y)$

Closure algorithm

Input: a set Σ of FDs, and a set X of attributes

Output: $C_{\Sigma}(X)$, the closure of X w.r.t. Σ

- 1. unused := Σ
- 2. closure := X
- 3. while $((Y \rightarrow Z) \in \text{unused and } Y \subseteq \text{closure})$

closure := closure $\cup Z$

 $unused := unused - \{Y \rightarrow Z\}$

4. return closure

Example

Closure of A w.r.t. $\{AB \rightarrow C, A \rightarrow B, CD \rightarrow A\}$ (blackboard)

8/13

Keys, candidate keys, and prime attributes

Let *R* be a relation with set of attributes *U* and FDs Σ

 $X \subseteq U$ is a key for R if $\Sigma \models X \rightarrow U$

Equivalently, X is a key if $C_{\Sigma}(X) = U$ (why?)

Candidate keys

Keys X such that, for each $Y \subset X$, Y is not a key Intuitively, keys with a minimal set of attributes

Prime attribute: an attribute of a candidate key

Attribute closure and candidate keys

Given a set Σ of FDs on attributes U, how do we compute all candidate keys?

- 1. $ck := \emptyset$
- 2. G := DAG of the powerset 2^U of U
 - Nodes are elements of 2^U (sets of attributes)
 - ▶ There is an edge from X to Y if $Y \subseteq X$ and $X Y = \{A\}$
- 3. Repeat until *G* is empty:

Find a node X without children if $C_{\Sigma}(X) = U$: $ck := ck \cup \{X\}$ Delete X and all its ancestors from Gelse:

Delete X from G

10/13

Implication of INDs

Given a set of INDs, what other INDs can we infer from it?

Axiomatization

Reflexivity: $R[X] \subseteq R[X]$

Transitivity: If $R[X] \subseteq S[Y]$ and $S[Y] \subseteq T[Z]$, then $R[X] \subseteq T[Z]$

Projection: If $R[X, Y] \subseteq S[W, Z]$ with |X| = |W|,

then $R[X] \subseteq S[W]$

Permutation: If $R[A_1, ..., A_n] \subseteq S[B_1, ..., B_n]$, then $R[A_{i_1}, ..., A_{i_n}] \subseteq S[B_{i_1}, ..., B_{i_n}]$, where $i_1, ..., i_n$ is a permutation of 1, ..., n

Sound and complete derivation procedure for INDs

FDs and INDs together

Given a set Σ of FDs and an FD ϕ , we can decide whether $\Sigma \models \phi$

Given a set Γ of INDs and an IND ψ , we can decide whether $\Gamma \models \psi$

What about $\Sigma \cup \Gamma \models \phi$ or $\Sigma \cup \Gamma \models \psi$?

This problem is undecidable: no algorithm can solve it

What if we consider only keys and foreign keys?

The implication problem is still undecidable

Unary inclusion dependencies (UINDs)

INDs of the form $R[A] \subseteq S[B]$ where A, B are attributes

The implication problem for FDs and UINDs is decidable in PTIME

12/13

Further reading

Abiteboul, Vianu, Hull. Foundations of Databases. Addison-Wesley, 1995

Chapter 8 Functional Dependencies

Chapter 9 Inclusion Dependencies

- Algorithm for checking implication of INDs
- Proof that implication of INDs is PSPACE-complete
- Undecidability proof for implication of FDs+INDs
- Axiomatization for FDs+UINDs