Introduction to Databases

(INFR10080)

(Multisets)

Instructor: Yang Cao

(Fall 2025)

Changelog

v25.0 Initial version

Duplicates

R		$\pi_A(R)$	SELECT A FROM R
Α	В	A	
a1	b1	<u></u> a1	A
a2	b2	a2	a1
a1	b2		a2
			a1

- We considered relational algebra on sets
- SQL uses bags: sets with duplicates

2/13

Multisets (a.k.a. bags)

Sets where the same element can occur multiple times

The number of occurrences of an element is called its multiplicity

Notation

 $a \in_k B$: a occurs k times in bag B

 $a \in B$: a occurs in B with multiplicity ≥ 1

 $a \notin B$: a does not occur in B (that is, $a \in_0 B$)

Relations are bags of tuples

Projection

Keeps duplicates

$$\pi_A \begin{pmatrix} A & B \\ \hline 2 & 3 \\ 1 & 1 \\ 2 & 2 \end{pmatrix} = \begin{array}{c} A \\ \hline 2 \\ 1 \\ 2 \end{array}$$

4/13

Relational algebra on bags

Cartesian product

Concatenates tuples as many times as they occur

Selection

Takes all occurrences of tuples satisfying the condition:

If
$$\bar{a} \in_k R$$
, then $\begin{cases} \bar{a} \in_k \sigma_{\theta}(R) & \text{if } \bar{a} \text{ satisfies } \theta \\ \bar{a} \notin \sigma_{\theta}(R) & \text{otherwise} \end{cases}$

Example

$$\sigma_{A>1} \begin{pmatrix} A & B \\ \hline 2 & 3 \\ 1 & 2 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} A & B \\ \hline 2 & 3 \\ 2 & 3 \end{pmatrix}$$

6/13

Relational algebra on bags

Duplicate elimination ε

New operation that removes duplicates:

If
$$\bar{a} \in R$$
, then $\bar{a} \in R$

Example

$$\varepsilon \begin{pmatrix} A & B \\ \hline 2 & 3 \\ 1 & 2 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} A & B \\ \hline 2 & 3 \\ 1 & 2 \end{pmatrix}$$

Union

Adds multiplicities:

If
$$\bar{a} \in_k R$$
 and $\bar{a} \in_n S$, then $\bar{a} \in_{k+n} R \cup S$

Example

8/13

Relational algebra on bags

Intersection

Takes the **minimum** multiplicity:

If
$$\bar{a} \in_k R$$
 and $\bar{a} \in_n S$, then $\bar{a} \in_{\min\{k,n\}} R \cap S$

Example

Difference

Subtracts multiplicities up to zero:

If
$$\bar{a} \in_k R$$
 and $\bar{a} \in_n S$, then
$$\begin{cases} \bar{a} \in_{k-n} R - S & \text{if } k > n \\ \bar{a} \notin R - S & \text{otherwise} \end{cases}$$

Example

10/13

RA on sets vs. RA on bags

Equivalences of RA on sets do not necessarily hold on bags

Example

On bags $\sigma_{\theta_1 \vee \theta_2}(R) \not\equiv \sigma_{\theta_1}(R) \cup \sigma_{\theta_2}(R)$

$$\varepsilon(\sigma_{\theta_1\vee\theta_2}(R))\equiv\varepsilon(\sigma_{\theta_1}(R)\cup\sigma_{\theta_2}(R))$$
 holds

Basic SQL queries revisited

$$Q := \operatorname{SELECT} \left[\operatorname{DISTINCT} \right] \alpha \operatorname{FROM} \tau \operatorname{WHERE} \theta$$

$$\mid Q_1 \operatorname{UNION} \left[\operatorname{ALL} \right] Q_2$$

$$\mid Q_1 \operatorname{INTERSECT} \left[\operatorname{ALL} \right] Q_2$$

$$\mid Q_1 \operatorname{EXCEPT} \left[\operatorname{ALL} \right] Q_2$$

12/13

SQL and RA on bags

SQL	RA on bags
SELECT α SELECT DISTINCT α	$\pi_{\alpha}(\cdot)$ $\varepsilon(\pi_{\alpha}(\cdot))$
Q_1 UNION ALL Q_2 Q_1 INTERSECT ALL Q_2 Q_1 EXCEPT ALL Q_2	$egin{aligned} Q_1 \cup Q_2 \ Q_1 \cap Q_2 \ Q_1 - Q_2 \end{aligned}$
Q_1 UNION Q_2 Q_1 INTERSECT Q_2 Q_1 EXCEPT Q_2	$egin{aligned} arepsilon(Q_1 \cup Q_2) \ arepsilon(Q_1 \cap Q_2) \ arepsilon(Q_1) - Q_2 \end{aligned}$