Introduction to Databases

(INFR10080)

(Equivalence of RA and RC)

Instructor: Yang Cao

(Fall 2025)

Changelog

v25.0 Initial version

$Algebra \equiv Safe calculus$

Fundamental theorem of database theory:

Relational algebra and Safe relational calculus equally expressive

- For every query in safe relational calculus there exists an equivalent query in relational algebra
- For every query in relational algebra there exists an equivalent query in safe relational calculus

We need a correspondence between column names and positions

When we say that a base relation R is over attributes A, B, C, . . . this means the 1st column is A, the 2nd is B, the 3rd is C, etc.

2/17

From algebra to calculus

Translate each RA expression $\it E$ into a FOL formula $\it \phi$

Assumptions (without loss of generality)

Each renaming operation renames only one attribute

Environment η

Injective map from attributes to variables
Unless stated otherwise, for an attribute A we assume $\eta(A) = x_A$ But in general the chosen variable names can be arbitrary

From algebra to calculus

Base relation

R over
$$A_1, \ldots, A_n$$
 is translated to $R(\eta(A_1), \ldots, \eta(A_n))$

Example

If R is a base relation over A, B

$$\eta = \{ A \mapsto x_A, B \mapsto x_B, \dots \}$$

then R is translated to $R(x_A, x_B)$

4/17

From algebra to calculus

Renaming $\rho_{\text{old} \rightarrow \text{new}}(E)$

- 1. Translate E to φ
- 2. If there is no mapping for new in η , add $\{\text{new} \mapsto x_{\text{new}}\}$
- 3. Replace every occurrence of $\eta(\text{new})$ in φ with a **fresh** variable
- 4. Replace every (free) occurrence of $\eta(old)$ in φ by $\eta(new)$

Example

If R is a base relation over A, B then $\rho_{A\to B}(\rho_{B\to C}(R))$ is translated to $R(x_B, x_C)$

From algebra to calculus

Projection

$$\pi_{\alpha}(\mathit{E})$$
 is translated to $\exists \mathit{X} \varphi$

where

- φ is the translation of E
- $X = \mathbf{free}(\varphi) \eta(\alpha)$ (attributes that are **not** projected become quantified)

Example

If R is a base relation over A, B then $\pi_A(R)$ is translated into $\exists x_B \ R(x_A, x_B)$

6/17

From algebra to calculus

Selection

$$\sigma_{\theta}(\mathit{E})$$
 is translated to $\varphi \wedge \eta(\theta)$

where

- ullet φ is the translation of E
- $\eta(\theta)$ is obtained from θ by replacing each attribute A by $\eta(A)$

Example

If R is a base relation over A, B then $\sigma_{A=B}(R)$ is translated into $R(x_A, x_B) \wedge x_A = x_B$

From algebra to calculus

Product	$E_1 \times E_2$	is translated to	$\varphi_1 \wedge \varphi_2$
Union	$\mathit{E}_1 \cup \mathit{E}_2$	is translated to	$\varphi_1 \vee \varphi_2$
Difference	$E_1 - E_2$	is translated to	$\varphi_1 \wedge \neg \varphi_2$

where

- φ_1 is the translation of E_1
- φ_2 is the translation of E_2

8/17

Example

Customer: CustID, Name

Account: Number, CustID

Environment $\eta = \{ \text{ CustID} \mapsto x_1, \text{ Name} \mapsto x_2, \text{ Number} \mapsto x_3 \}$

How do we translate Customer ⋈ Account ? Blackboard time!

$$\exists x_4 \; \mathsf{Customer}(x_1, x_2) \land \mathsf{Account}(x_3, x_4) \land x_1 = x_4$$

Active domain in relational algebra

For R over attributes A_1, \ldots, A_n

$$adom(R)$$
 is given by $\rho_{A_1 \to A}(\pi_{A_1}(R)) \cup \cdots \cup \rho_{A_n \to A}(\pi_{A_n}(R))$

$$adom(D) = \bigcup_{R \in D} adom(R)$$

We denote by $Adom_N$ the RA expression that, on a database D, returns a table

- with a single column, named N
- consisting of all elements of adom(D)

10/17

From calculus to algebra

Translate each FOL formula φ into an RA expression E

Assumptions (without loss of generality)

- No universal quantifiers, implications, double negations
- No distinct pair of quantifiers binds the same variable name
- No variable name occurs both free and bound
- No variable name is repeated within a predicate
- No constants in predicates
- No atoms of the form $x \circ p \times c_1 \circ p \cdot c_2$

Environment η

Injective map from variables to attributes
Unless stated otherwise, for a variable x we assume $\eta(x) = A_x$

But in general the chosen attribute names can be arbitrary

From calculus to algebra

Let R be over attributes A_1, \ldots, A_n

Predicate

$$R(x_1, \dots, x_n)$$
 is translated to $\rho_{A_1 \to \eta(x_1), \dots, A_n \to \eta(x_n)}(R)$

Example

For *R* over attributes *A*, *B*, *C*, R(x, y, z) is translated into $\rho_{A \to A_x, B \to A_y, C \to A_z}(R)$

12/17

From calculus to algebra

Existential quantification

$$\exists x \ \varphi$$
 is translated to $\pi_{\eta(X-\{x\})}(E)$

where

- ullet *E* is the translation of arphi
- $X = free(\varphi)$

Example

For φ with free variables x, y, z and translation E, $\exists y \ \varphi$ is translated to $\pi_{A_x,A_z}(E)$

From calculus to algebra

Comparisons

$$x$$
 op y is translated to $\sigma_{\eta(x)} \operatorname{op} \eta(y) \left(\operatorname{Adom}_{\eta(x)} \times \operatorname{Adom}_{\eta(y)} \right)$
 x op c is translated to $\sigma_{\eta(x)} \operatorname{op} c \left(\operatorname{Adom}_{\eta(x)} \right)$

Example

$$x = y$$
 is translated to $\sigma_{A_x = A_y} (\mathbf{Adom}_{A_x} \times \mathbf{Adom}_{A_y})$
 $x > 1$ is translated to $\sigma_{A_x > 1} (\mathbf{Adom}_{A_x})$

14/17

From calculus to algebra

Negation

$$\neg \varphi$$
 is translated into $\left(\underset{x \in \mathsf{free}(\varphi)}{\times} \mathsf{Adom}_{\eta(x)} \right) - E$

where \emph{E} is the translation of φ

Example

For φ with free variables x, y and translation E $\neg \varphi$ is translated to $\mathbf{Adom}_{A_x} \times \mathbf{Adom}_{A_y} - E$

From calculus to algebra

Disjunction: $\varphi_1 \vee \varphi_2$ is translated to

$$E_1 \times (\underset{x \in X_2 - X_1}{\times} \mathsf{Adom}_{\eta(x)}) \cup E_2 \times (\underset{x \in X_1 - X_2}{\times} \mathsf{Adom}_{\eta(x)})$$

where, for $i \in \{1, 2\}$,

- E_i is the translation of φ_i
- $X_i = \mathbf{free}(\varphi_i)$

Conjunction: same as disjunction, but use \cap instead of \cup

16/17

Example

Customer: CustID, Name

Account: Number, CustID

Translate $\exists x_4 \; \text{Customer}(x_1, x_2) \land \text{Account}(x_3, x_4) \land x_1 = x_4$

Environment $\eta = \{ x_1 \mapsto A, x_2 \mapsto B, x_3 \mapsto C, x_4 \mapsto D \}$

$$\pi_{A,B,C}\Big(\big(E_1 \times \mathsf{Adom}_C \times \mathsf{Adom}_D\big) \cap \\ \big(\mathsf{Adom}_A \times \mathsf{Adom}_B \times E_2\big) \cap \\ \big(\sigma_{A=D}(\mathsf{Adom}_A \times \mathsf{Adom}_D) \times \mathsf{Adom}_B \times \mathsf{Adom}_C\big)\Big)$$

where

- $E_1 = \rho_{\text{CustID} \to A, \text{Name} \to B}(\text{Customer})$
- $E_2 = \rho_{\text{Number} \to C, \text{CustID} \to D}(\text{Account})$