
Introduction to Databases
(INFR10080)

(Nested Queries)

Instructor: Yang Cao

(Fall 2025)

Changelog

v25.0 Initial version

1/20

Aggregate results in WHERE
Account

Number Branch CustID Balance

111 London 1 1330.00
222 London 2 1756.00
333 Edinburgh 1 450.00

Accounts with a higher balance than the average of all accounts

SELECT A.number
FROM Account A
WHERE A.balance > (SELECT AVG(A1.balance)

FROM Account A1);

Answer:
Number

111
222

2/20

Aggregate results in WHERE

Accounts with a higher balance than the average of all accounts

SELECT A.number
FROM Account A
WHERE A.balance > AVG(SELECT A1.balance

FROM Account A1);

ERROR
Aggregate functions can only be used in SELECT and HAVING

3/20

Comparisons with subquery results

SELECT …
FROM …
WHERE term op (subquery) ;
Allowed as long as subquery returns a single value

SELECT …
FROM …
WHERE (term1, . . . , termn) op (subquery) ;
Allowed as long as subquery returns a single row with n columns

4/20

The WHERE clause revisited
term := attribute | value
comparison :=

• (term, . . . , term) op (term, . . . , term)
with op ∈ {=, <>, <, > <=, >=}

• term IS [NOT] NULL
• (term, . . . , term) op ANY (query)

• (term, . . . , term) op ALL (query)

• (term, . . . , term) [NOT] IN (query)

• EXISTS (query)

condition :=

• comparison

• condition AND condition

• condition OR condition

• NOT condition
5/20

Comparisons between tuples

Equality

(t1, . . . tn) = (t′1, . . . , t
′
n) ⇐⇒ t1 = t′1 AND · · · AND tn = t′n

Less-than

(t1, t2, . . . , tn) < (t′1, t
′
2, . . . , t

′
n) ⇐⇒

t1 < t′1 OR
(
t1 = t′1 AND (t2, . . . , tn) < (t′2, . . . , t

′
n)
)

Others (derived)
For t̄ = (t1, . . . , tn) and t̄′ = (t′1, . . . , t

′
n):

t̄ <> t̄′ ⇐⇒ NOT (̄t = t̄′)

t̄ <= t̄′ ⇐⇒ t̄ < t̄′ OR t̄ = t̄′

t̄ > t̄′ ⇐⇒ NOT (̄t <= t̄′)

t̄ >= t̄′ ⇐⇒ NOT (̄t < t̄′)

6/20

ANY

(term, . . . , term) op ANY (query)

True if there exists a row r̄ in the results of query
such that (term, . . . , term) op r̄ is true

Examples: Consider the table T =

A
1
2
3

• 3 < ANY(SELECT A FROM T) is false
• 3 < ANY(SELECT A+1 FROM T) is true
• What about 3 < ANY(SELECT A FROM T WHERE A = 0) ?

7/20

ALL

(term, . . . , term) op ALL (query)

True if for all rows r̄ in the results of query
(term, . . . , term) op r̄ is true

Examples: Consider the table T =

A
3
4
5
6

• 3 < ALL(SELECT A FROM T WHERE A <> 3) is true
• 3 < ALL(SELECT A FROM T WHERE A <> 6) is false
• What about 3 < ALL(SELECT A FROM T WHERE A = 0) ?

8/20

Examples with ANY / ALL

Customer: ID, Name, City
Account: Number, Branch, CustID, Balance

ID of customers from London who own an account

SELECT C.id
FROM Customer C
WHERE C.city = ’London’

AND C.id = ANY(SELECT A.custid
FROM Account A);

Customers living in cities without a branch

SELECT *
FROM Customer C
WHERE C.city <> ALL (SELECT A.branch

FROM Account A);

9/20

IN / NOT IN

(term, . . . , term) IN (query)

same as

(term, . . . , term) = ANY (query)

(term, . . . , term) NOT IN (query)

same as

(term, . . . , term) <> ALL (query)

10/20

Examples with IN / NOT IN

ID of customers from London who own an account

SELECT C.id
FROM Customer C
WHERE C.city = ’London’

AND C.id IN (SELECT A.custid
FROM Account A);

Customers living in cities without a branch

SELECT *
FROM Customer C
WHERE C.city NOT IN (SELECT A.branch

FROM Account A);

11/20

EXISTS

EXISTS (query) is true if the result of query is non-empty

(Stupid) Example

Return all the customers if there are some accounts in London

SELECT *
FROM Customer
WHERE EXISTS (SELECT 1

FROM Account
WHERE branch = ’London’);

12/20

Correlated subqueries

All nested queries can refer to attributes in the parent queries

(Smarter) Example

Return customers who have an account in London

SELECT *
FROM Customer C
WHERE EXISTS (SELECT 1

FROM Account A
WHERE A.branch = ’London’

AND A.custid = C.id);

parameters = attributes of a subquery that refer to outer queries

13/20

Examples with EXISTS / NOT EXISTS

ID of customers from London who own an account

SELECT C.id
FROM Customer C
WHERE C.city = ’London’

AND EXISTS (SELECT *
FROM Account A
WHERE A.custid = C.id);

Customers living in cities without a branch

SELECT *
FROM Customer C
WHERE NOT EXISTS (SELECT *

FROM Account A
WHERE A.branch = C.city);

14/20

Scoping

A subquery has

• a local scope (its FROM clause)

• n outer scopes (where n is the level of nesting)
(these are the FROM clauses of the parent queries)

For each reference to an attribute

1. Look for a binding in the local scope

2. If no binding is found, look in the closest outer scope

3. If no binding is found, look in the next closest outer scope

4. ...

5. If no binding is found, give error

15/20

Attribute bindings

SELECT *
FROM table1
WHERE EXISTS (SELECT 1

FROM table2
WHERE A = B);

What A, B refer to depends on the attributes in table1 and table2

• Always give aliases to tables

• Always prefix the attributes with the tables they refer to

SELECT *
FROM table1 T1
WHERE EXISTS (SELECT 1

FROM table2 T2
WHERE T2.A = T1.B);

16/20

The FROM clause revisited

FROM table1 [[AS] T1], . . . , tablen [[AS] Tn]

table :=

• base-table

• join-table

• (query)

join-table :=

• table JOIN table ON condition

• table NATURAL JOIN table

• table CROSS JOIN table

17/20

Subqueries in FROM

Must always be given a name

SELECT * FROM (SELECT * FROM R);

ERROR: subquery in FROM must have an alias

Cannot refer to attributes of other tables in the same FROM clause

SELECT *
FROM R, (SELECT * FROM S WHERE S.a=R.a) S1 ;

ERROR: invalid reference to FROM-clause entry for table ”r”

18/20

Example: Avoiding HAVING

Branches with a total balance (across accounts) of at least 500

SELECT A.branch
FROM Account A
GROUP BY A.branch
HAVING SUM(A.balance) >= 500 ;

Same query without HAVING:

SELECT subquery.branch
FROM (SELECT A.branch, SUM(A.balance) AS total

FROM Account A
GROUP BY A.branch) AS subquery

WHERE subquery.total >= 500 ;

19/20

Example: Aggregation on aggregates

Average of the total balances across each customer’s accounts

1. Find the total balance across each customer’s accounts

2. Take the average of the totals

SELECT AVG(subquery.tot)
FROM (SELECT A.custid, SUM(A.balance) AS tot

FROM Account A
GROUP BY A.custid) AS subquery ;

20/20

