
Introduction to Databases
(INFR10080)

(Basic SQL)

(Fall 2025)

Changelog

v25.0 Initial version

v25.1 Move ALTER TABLE to ”Modifying Databases” section

1/29



The data model of SQL

Data is organised in tables (also called relations)
which are collections of tuples (also called rows or records)
which are all of the same length

Schema

• Set of table names

• List of typed distinct column names
(also called attributes) for each table

• Constraints within a table or between tables ⇐ not for now

Instance

• Actual data (that is, the rows of the table)

• Must satisfy typing and constraints

2/29

SQL

• Structured Query Language

• Declarative language for relational databases

• Implemented in all major (free and commercial) RDBMSs

• International Standard since 1987 (latest rev. June 2023)

• Consists of two sublanguages:

DDL (Data Definition Language)
operations on the schema

DML (Data Manipulation Language)
operations on the instance

3/29



Creating database

Creating tables

Basic syntax

CREATE TABLE table_name (
column_name 1 column_type 1,
column_name 2 column_type 2,
...

column_name n column_type n

);

Example

CREATE TABLE Customer (
custid varchar(10),
name varchar(20),
city varchar(30),
address varchar(30)

);

4/29



Most common SQL data types

Strings
• varchar(n) – variable length, at most n characters

Numbers
• smallint
• integer or int
• bigint
• numeric(p,s) – arbitrary precision number
At most p total digits with s digits in the fractional part

Date & Time
• date – e.g., ‘2016-10-03’
• time – time of the day: e.g., ‘21:09’
• timestamp

5/29

Default values

Syntax

CREATE TABLE table_name (
column_name 1 column_type 1

[
DEFAULT value 1

]
,

column_name 2 column_type 2

[
DEFAULT value 2

]
,

...

column_name n column_type n

[
DEFAULT value n

]
);

Example

CREATE TABLE Account (
accnum varchar(12),
branch varchar(30),
custid varchar(10),
balance numeric(14,2) DEFAULT 0

);

6/29



Populating tables

General syntax

INSERT INTO table_name VALUES (. . .), . . ., (. . .);

Examples

INSERT INTO Account VALUES
(’243576’,’Edinburgh’,’cust1’,-120);

INSERT INTO Customer VALUES
(’cust1’,’Renton’,’Edinburgh’,’2 Wellington Pl’),
(’cust2’,’Watson’,’London’,’221B Baker St’),
(’cust3’,’Holmes’,’London’,’221B Baker St’);

7/29

Populating tables with default values

Two possibilities:

1. Use the keyword DEFAULT in INSERT
Example

INSERT INTO Account VALUES
(’250018’,’London’,’cust3’,DEFAULT);

2. List attributes explicitly (omitted ones will get the default)

Example

INSERT INTO Account (accnum,branch,custid) VALUES
(’250018’,’London’,’cust3’);

Attributes without DEFAULT in CREATE TABLE
have default value NULL ⇐ more on this later

8/29



Querying your tables

An extremely simple example

Customer

ID Name City Address

cust1 Renton Edinburgh 2 Wellington Pl
cust2 Watson London 221B Baker St
cust3 Holmes London 221B Baker St

List all attributes of all customers

SELECT *
FROM Customer ;

* means “all attributes”

9/29



A very simple example

Customer

ID Name City Address

cust1 Renton Edinburgh 2 Wellington Pl
cust2 Watson London 221B Baker St
cust3 Holmes London 221B Baker St

List name and address of all customers

SELECT Name, Address
FROM Customer ;

Output:

Name Address

Renton 2 Wellington Pl
Watson 221B Baker St
Holmes 221B Baker St

10/29

A simple example

Customer

ID Name City Address

cust1 Renton Edinburgh 2 Wellington Pl
cust2 Watson London 221B Baker St
cust3 Holmes London 221B Baker St

List name and address of customers living in Edinburgh

SELECT Name, Address
FROM Customer
WHERE City = ’Edinburgh’ ;

Output:
Name Address

Renton 2 Wellington Pl

11/29



The basicWHERE clause

SELECT ...
FROM ...
WHERE ⟨condition⟩ ;

term :=

| attribute

| value

comparison :=

| term op term, with op ∈ {=, <>, <, >, <=, >=}
| term IS NULL
| term IS NOT NULL

condition :=

| comparison

| condition AND condition

| condition OR condition

| NOT condition

12/29

Limiting Output

Customer

ID Name City Address

cust1 Renton Edinburgh 2 Wellington Pl
cust2 Watson London 221B Baker St
cust3 Holmes London 221B Baker St
… … …

List all attributes of all customers

SELECT *
FROM Customer ;

What if we have a very large table with too many rows? LIMIT n

13/29



Ordering

ORDER BY ⟨column1⟩ [DESC ], . . . , ⟨columnn⟩ [DESC ]

Sorts the output rows according to the values of column1

If two rows have the same value for column1,
they are sorted by the values of column2 and so on …

• Default ordering is ascending (can be specified with ASC)

• Descending ordering is specified by DESC

14/29

Ordering example (1)

Account

Number Branch CustID Balance

111 London 1 1330.00
222 London 2 1756.00
333 Edinburgh 1 450.00

SELECT *
FROM Account
ORDER BY custid ASC, balance DESC ;

Number Branch CustID Balance

111 London 1 1330.00
333 Edinburgh 1 450.00
222 London 2 1756.00

15/29



Ordering example (2)

Account

Number Branch CustID Balance

111 London 1 1330.00
222 London 2 1756.00
333 Edinburgh 1 450.00

SELECT *
FROM Account
ORDER BY custid DESC, balance ASC ;

Number Branch CustID Balance

222 London 2 1756.00
333 Edinburgh 1 450.00
111 London 1 1330.00

16/29

Relating tables



More than one table in FROM
Table1

A B

1 2
3 4
1 3

Table2

C D E

2 1 0
3 2 1

SELECT B, C
FROM Table1, Table2 ;

1. Each row of Table1 is concatenated with every row of Table2

A B C D E

1 2 2 1 0
1 2 3 2 1
3 4 2 1 0
3 4 3 2 1
1 3 2 1 0
1 3 3 2 1

17/29

More than one table in FROM
Table1

A B

1 2
3 4
1 3

Table2

C D E

2 1 0
3 2 1

SELECT B, C
FROM Table1, Table2 ;

2. For each resulting row, the values of B and C are returned

B C

2 2
4 2
3 2
2 3
4 3
3 3

17/29



Joining tables

Customer

ID Name City

cust1 Renton Edinburgh
cust2 Watson London
cust3 Holmes London

Account

AccNum CustID Balance

123321 cust3 1330.00
243576 cust1 -120.00

List customers’ names and their accounts’ numbers

SELECT Name, AccNum
FROM Customer, Account
WHERE ID = CustID ;

Semantics: nested loop over the tables listed in FROM

Output:

Name AccNum

Renton 243576
Holmes 123321 18/29

Basic queries in SQL

The basic pattern of SQL queries:

SELECT ⟨comma-separated list of value expressions⟩
FROM ⟨comma-separated list of tables⟩
WHERE ⟨condition⟩ ;

Idea

1. Loop over all rows of the tables listed in FROM
2. Take those that satisfy the WHERE condition

3. Compute and output the values listed in SELECT

19/29



The basicWHERE clause

term :=

| attribute

| value

comparison :=

| term op term, with op ∈ {=, <>, <, >, <=, >=}
| term IS NULL
| term IS NOT NULL

condition :=

| comparison

| condition AND condition

| condition OR condition

| NOT condition

20/29

WHERE conditions in queries

• filter data within a table

SELECT Name, Address
FROM Customer
WHERE City = ’Edinburgh’ ;

• join data from different tables

SELECT Name, AccNum
FROM Customer, Account
WHERE ID = CustID ;

Filtering and join together

SELECT Name, Address, AccNum
FROM Customer, Account
WHERE ID = CustID AND City = ’Edinburgh’ ;

21/29



Explicit join syntax

table 1 JOIN table 2 ON ⟨condition⟩1
...

JOIN table n ON ⟨condition⟩n−1

Logically separate join conditions from filters

SELECT Name, Balance
FROM Customer, Account
WHERE ID = CustID AND Balance < 0 ;

SELECT Name, Balance
FROM Customer JOIN Account ON ID=CustID
WHERE Balance < 0 ;

22/29

Qualification of attributes

Customer

CustID Name City

cust1 Renton Edinburgh
cust2 Watson London
cust3 Holmes London

Account

AccNum CustID Balance

123321 cust3 1330.00
243576 cust1 -120.00

List the name of customers whose account is overdrawn

SELECT Customer.Name
FROM Customer, Account
WHERE Account.CustID = Customer.CustID

AND Account.Balance < 0 ;

We need to specify the relations attributes are coming from

What is the output of this query?

23/29



Range variables

Assign new names to tables in FROM

SELECT Customer.Name, Account.Balance
FROM Customer, Account
WHERE Account.CustID = Customer.CustID

AND Account.Balance < 0 ;

SELECT C.Name, A.Balance
FROM Customer C, Account AS A
WHERE A.CustID = C.CustID

AND A.Balance < 0 ;

SELECT C.Name, A.Balance
FROM Customer C JOIN Account A ON C.CustID=A.CustID
WHERE A.Balance < 0 ;

24/29

Renaming attributes

SELECT C.Name CustName, A.Balance AS AccBal
FROM Customer C, Account A
WHERE A.CustID = C.CustID

AND A.Balance < 0 ;

This does not work:

SELECT C.Name CustName, A.Balance AS AccBal
FROM Customer C, Account A
WHERE A.CustID = C.CustID

AND AccBal < 0 ;

25/29



Modifying databases

Changing the definition of a table

ALTER TABLE name

RENAME TO new_name ;
RENAME column TO new_column ;
ADD column type ;
DROP column ;
ALTER column

TYPE type ;
SET DEFAULT value ;
DROP DEFAULT;

Destroying tables

TRUNCATE TABLE name; delete all rows from the table
DROP TABLE name; completely remove table from schema

Many other changes are possible …

26/29



Database modification: Deletion

General form

DELETE FROM table_name
WHERE ⟨condition⟩;

All rows in table_name satisfying ⟨condition⟩ are deleted

Example

Remove accounts with zero balance and unknown owner

DELETE FROM Account
WHERE Balance = 0 AND CustID IS NULL ;

27/29

Database modification: Replacement

General form
UPDATE table_name
SET ⟨assignments⟩
WHERE ⟨condition⟩ ;

Replace the values of some attributes (using ⟨assignments⟩)
in each row of table_name that satisfies ⟨condition⟩

Examples

Set a new balance on account 745622

UPDATE Account
SET balance = 1503.82
WHERE accnum = ’745622’ ;

Accounts in London with positive balance get a 0.2% bonus

UPDATE Account
SET balance = balance + 0.002 * balance
WHERE branch = ’London’ AND balance > 0 ; 28/29



Concluding remarks

• SQL is case-insensitive (for keywords and table/column names)

but string constants are case-sensitive: ’abc’ ̸= ’ aBc’

• (SQL) queries are read-only
they do not modify the schema
nor the instance of the database

• Always use range variables (aliases for tables)
and fully qualify references to attributes
=⇒ improves readability of queries
=⇒ more robust against schema changes

29/29


