Introduction to Databases

(INFR10080)

(SQL Constraints and Triggers)

Instructor: Yang Cao

&Py THE UNIVERSITY

(Fall 2025) A
Y- of EDINBURGH

Changelog

v25.0 Initial version

1/15

Check constraints (1)

Syntax: CHECK (conditional-expression)

An update or insertion is rejected if
the condition does not evaluate to true

Example

CREATE TABLE Products (

pcode
pname
pdesc
ptype
price

INTEGER PRIMARY KEY,
VARCHAR(10),
VARCHAR(20),
VARCHAR(20),
NUMERIC(6,2) CHECK (price > 0),

CHECK (ptype IN (’BOOK’, 'MOVIE’, 'MUSIC’))

)

Check constraints (2)

Another example

CREATE TABLE Invoices (

invid
ordid
amount
issued
due

INTEGER PRIMARY KEY,
INTEGER NOT NULL UNIQUE,
NUMERIC(8,2) CHECK (amount > 0),
DATE,

DATE,

CHECK (ordid IN SELECT ordid FROM Orders),
CHECK (due >= issued)

)

The check on ordid is similar to a foreign key, but not the same

SQL allows queries in CHECK (not implemented in PostgreSQL)

2/15

3/15

A domain is essentially a data type with optional constraints

Syntax

Domain constraints (1)

CREATE DOMAIN name datatype | DEFAULT value] [constraint]

where constraintis NOT NULL | CHECK (expression)

In CHECK expression, VALUE refers to the value being tested

Example

CREATE DOMAIN posnumber NUMERIC(10,2)
CHECK (VALUE > 0);

CREATE DOMAIN category VARCHAR(20)
CHECK (VALUE IN (’'BOOK’, 'MUSIC’,

CREATE TABLE
pcode
pname
pdesc
ptype
price

)

CREATE TABLE
invid
ordid
amount
issued
due

CHECK (ordid IN SELECT ordid FROM Orders),

Domain constraints (2)

Products (

INTEGER PRIMARY KEY,
VARCHAR(10),
VARCHAR(20),
category,

posnumber

Invoices (

INTEGER PRIMARY KEY,
INTEGER NOT NULL UNIOQUE,
posnumber,

DATE,

DATE,

CHECK (due >= issued)

)

'MOVIE'));

4/15

5/15

Assertions

Essentially a CHECK constraint not bound to a specific table
Syntax: CREATE ASSERTION name CHECK (condition)

Example

CREATE ASSERTION too_many_ customers
CHECK ((SELECT COUNT(*)
FROM customers) <= 1000) ;

e Standard SQL
e Not implemented in any of the currently available DBMSs

e The problem is allowing queries in CHECK

6/15

Triggers

Specify an action to execute if certain events took place

Event: a change to the database that activates the trigger
(an insertion, a deletion, or an update)

Condition: a query or test checked when the trigger is activated
(for a query: empty is false, non-empty is true)

Action: a procedure executed when the condition is true

can refer to old/new values of modified tuples
can examine answers to the condition query
can execute new queries

can make changes to the database
(both data and schema)

e can be executed before/after the event
for each row or for each statement

7/15

Triggers: Example 1

Suppose we have
Products : pcode, pname, price
Orders : ordid, odate, ocust, final (bool)
Details : ordid, pcode, qty

Prices : ordid, pcode, price

Whenever a new detail for an order is inserted
we want to save the price of the corresponding products

8/15

Triggers: Example 1

CREATE TRIGGER save_price AFTER INSERT ON details
REFERENCING NEW TABLE AS inserted
FOR EACH STATEMENT
WHEN TRUE
BEGIN
INSERT INTO prices(ordid,pcode,price)
SELECT I.ordid, I.pcode, P.price
FROM inserted I JOIN products P
ON I.pcode = P.pcode
END ;

9/15

Suppose we have

Products
Orders
Details

Prices

Invoices

Triggers: Example 2

: pcode, pname, price
: ordid, odate, ocust, final (bool)
: ordid, pcode, gty

: ordid, pcode, price

. invid (serial), ordid, amount, issued, due

Whenever an order becomes final
we want to generate an invoice for it

Triggers: Example 2

CREATE TRIGGER invoice_ order
AFTER UPDATE OF final ON orders
REFERENCING OLD ROW AS oldrow

NEW ROW AS newrow

FOR EACH ROW

WHEN oldrow.final

BEGIN
INSERT
SELECT

FROM
WHERE
AND
AND
AND

END ;

INTO invoices(ordid, amount, issued, due)
O.ordid, SUM(D.qty * P.price),

O.odate+7d
orders O, details D, prices P
.ordid

O.odate,

o

0.
D.
D.

ordid
ordid
pcode

FALSE AND newrow.final

newrow.ordid
D.ordid
P.ordid
P.pcode

10/15

11/15

Triggers in real systems

In PostgreSQL (and similarly for other DBMSs):

CREATE TRIGGER name
{ BEFORE | AFTER } event ON table name

FOR EACH { ROW | STATEMENT }

WHEN (condition)
EXECUTE PROCEDURE function name (arguments)

where event can be one of:
e INSERT
e UPDATE [OF columni|, ... 11
e DELETE

and condition cannot contain queries

Triggers for database consistency

Constraints Triggers

Protection against any statement Activated by specific statement

Defined declaratively Defined operationally

e easier to understand e effect may be obscure

e easier to optimize e more flexibility

12/15

13/15

Other uses of triggers

e Alert users
e Logging events

Gather statistics

e Replication
e Workflow management

e Business rules enforcement

14/15

Caution with triggers

e An event may activate more than one trigger
e Activated triggers are processed in some arbitrary order

e Actions can activate other triggers: we get a chain

Recursive trigger

The action directly/indirectly activates the same trigger

—> collections of triggers can have unpredictable effects

15/15

