
Introduction to Databases
(INFR10080)

(SQL Constraints and Triggers)

Instructor: Yang Cao

(Fall 2025)

Changelog

v25.0 Initial version

1/15

Check constraints (1)

Syntax: CHECK (conditional-expression)

An update or insertion is rejected if
the condition does not evaluate to true

Example

CREATE TABLE Products (
pcode INTEGER PRIMARY KEY,
pname VARCHAR(10),
pdesc VARCHAR(20),
ptype VARCHAR(20),
price NUMERIC(6,2) CHECK (price > 0),
CHECK (ptype IN (’BOOK’,’MOVIE’,’MUSIC’))

);

2/15

Check constraints (2)

Another example

CREATE TABLE Invoices (
invid INTEGER PRIMARY KEY,
ordid INTEGER NOT NULL UNIQUE,
amount NUMERIC(8,2) CHECK (amount > 0),
issued DATE,
due DATE,
CHECK (ordid IN SELECT ordid FROM Orders),
CHECK (due >= issued)

);

The check on ordid is similar to a foreign key, but not the same

SQL allows queries in CHECK (not implemented in PostgreSQL)

3/15

Domain constraints (1)

A domain is essentially a data type with optional constraints

Syntax

CREATE DOMAIN name datatype [DEFAULT value] [constraint]

where constraint is NOT NULL | CHECK (expression)

In CHECK expression, VALUE refers to the value being tested

Example

CREATE DOMAIN posnumber NUMERIC(10,2)
CHECK (VALUE > 0);

CREATE DOMAIN category VARCHAR(20)
CHECK (VALUE IN (’BOOK’, ’MUSIC’, ’MOVIE’));

4/15

Domain constraints (2)

CREATE TABLE Products (
pcode INTEGER PRIMARY KEY,
pname VARCHAR(10),
pdesc VARCHAR(20),
ptype category,
price posnumber

);

CREATE TABLE Invoices (
invid INTEGER PRIMARY KEY,
ordid INTEGER NOT NULL UNIQUE,
amount posnumber,
issued DATE,
due DATE,
CHECK (ordid IN SELECT ordid FROM Orders),
CHECK (due >= issued)

);

5/15

Assertions

Essentially a CHECK constraint not bound to a specific table

Syntax: CREATE ASSERTION name CHECK (condition)

Example

CREATE ASSERTION too_many_customers
CHECK ((SELECT COUNT(*)

FROM customers) <= 1000) ;

• Standard SQL

• Not implemented in any of the currently available DBMSs

• The problem is allowing queries in CHECK

6/15

Triggers

Specify an action to execute if certain events took place

Event: a change to the database that activates the trigger
(an insertion, a deletion, or an update)

Condition: a query or test checked when the trigger is activated
(for a query: empty is false, non-empty is true)

Action: a procedure executed when the condition is true

• can refer to old/new values of modified tuples
• can examine answers to the condition query
• can execute new queries
• can make changes to the database

(both data and schema)
• can be executed before/after the event

for each row or for each statement

7/15

Triggers: Example 1

Suppose we have

Products : pcode, pname, price

Orders : ordid, odate, ocust, final (bool)

Details : ordid, pcode, qty

Prices : ordid, pcode, price

Whenever a new detail for an order is inserted
we want to save the price of the corresponding products

8/15

Triggers: Example 1

CREATE TRIGGER save_price AFTER INSERT ON details
REFERENCING NEW TABLE AS inserted
FOR EACH STATEMENT
WHEN TRUE
BEGIN

INSERT INTO prices(ordid,pcode,price)
SELECT I.ordid, I.pcode, P.price
FROM inserted I JOIN products P

ON I.pcode = P.pcode
END ;

9/15

Triggers: Example 2

Suppose we have

Products : pcode, pname, price

Orders : ordid, odate, ocust, final (bool)

Details : ordid, pcode, qty

Prices : ordid, pcode, price

Invoices : invid (serial), ordid, amount, issued, due

Whenever an order becomes final
we want to generate an invoice for it

10/15

Triggers: Example 2

CREATE TRIGGER invoice_order
AFTER UPDATE OF final ON orders
REFERENCING OLD ROW AS oldrow

NEW ROW AS newrow
FOR EACH ROW
WHEN oldrow.final = FALSE AND newrow.final = TRUE
BEGIN

INSERT INTO invoices(ordid,amount,issued,due)
SELECT O.ordid, SUM(D.qty * P.price),

O.odate, O.odate+7d
FROM orders O, details D, prices P
WHERE O.ordid = newrow.ordid

AND O.ordid = D.ordid
AND D.ordid = P.ordid
AND D.pcode = P.pcode

END ;

11/15

Triggers in real systems

In PostgreSQL (and similarly for other DBMSs):

CREATE TRIGGER name
{ BEFORE | AFTER } event ON table_name
FOR EACH { ROW | STATEMENT }
WHEN (condition)
EXECUTE PROCEDURE function_name (arguments)

where event can be one of:

• INSERT
• UPDATE [OF column [, ...]]

• DELETE
and condition cannot contain queries

12/15

Triggers for database consistency

Constraints

Protection against any statement

Defined declaratively

• easier to understand

• easier to optimize

Triggers

Activated by specific statement

Defined operationally

• effect may be obscure

• more flexibility

13/15

Other uses of triggers

• Alert users

• Logging events

• Gather statistics

• Replication

• Workflow management

• Business rules enforcement

14/15

Caution with triggers

• An event may activate more than one trigger

• Activated triggers are processed in some arbitrary order

• Actions can activate other triggers: we get a chain

Recursive trigger

The action directly/indirectly activates the same trigger

=⇒ collections of triggers can have unpredictable effects

15/15

