Introduction to Databases

(INFR10080)

(Relational Algebra)

(Fall 2025)

Changelog

v25.0 Initial version

Data model

A relation is a set of records

over the same set of (distinct) attribute names

• A **record** is a total function from attribute names to values

Schema

- Set of relation names
- Set of distinct attributes for each table

Note that columns are not ordered

Instance

• Actual data (that is, the records in each relation)

2/21

Relational algebra

Procedural query language

A relational algebra expression

- takes as input one or more relations
- applies a sequence of operations
- returns a relation as output

Operations:

Projection	(π)	Union	(\bigcup)
Selection	(σ)	Intersection	(\cap)
Product	(\times)	Difference	(-)
Renaming	(ρ)		

The application of each operation results in a new (virtual) relation that can be used as input to other operations

Projection

- Vertical operation: choose some of the columns
- Syntax: $\pi_{\text{set of attributes}}(\text{relation})$
- $\pi_{A_1,...,A_n}(R)$ takes only the values of attributes A_1,\ldots,A_n for each tuple in R

Customer

CustID Name City **Address** Edinburgh 2 Wellington Pl cust1 Renton Watson London 221B Baker St cust2 London 221B Baker St cust3 Holmes

$\pi_{Name,City}(Customer)$

City
Edinburgh
London
London

4/21

Selection

- Horizontal operation: choose rows satisfying some condition
- Syntax: $\sigma_{\text{condition}}(\text{relation})$
- $\sigma_{\theta}(R)$ takes only the tuples in R for which θ is satisfied

term := attribute | constant
$$\theta := \text{term op term with op} \in \{=, \neq, >, <, \geqslant, \leqslant\}$$
$$\mid \theta \wedge \theta \mid \theta \vee \theta \mid \neg \theta$$

Example of selection

Customer

CustID	Name	City	Age	
cust1	Renton	Edinburgh	24	
cust2	Watson	London	32	
cust3	Holmes	London	35	

$\sigma_{\mathsf{City} \neq '\mathsf{Edinburgh'} \, \land \, \mathsf{Age} < 33}(\mathsf{Customer})$

CustID	Name	City	Age
cust2	Watson	London	32

6/21

Efficiency (1)

Consecutive selections can be combined into a single one:

Example

$$Q_1 = \sigma_{\text{City} \neq '\text{Edinburgh'}}(\sigma_{\text{Age} < 33}(\text{Customer}))$$

$$Q_2 = \sigma_{\text{City} \neq '\text{Edinburgh'} \land \text{Age} < 33}(\text{Customer})$$

$$Q_1 \equiv Q_2$$
 but Q_2 faster than Q_1 in general

Efficiency (2)

Projection can be pulled in front of selection

$$\sigma_{\theta}(\pi_{\alpha}(R)) \equiv \pi_{\alpha}(\sigma_{\theta}(R))$$

only if all attributes mentioned in θ appear in α

Example

$$Q_1 = \pi_{\mathsf{Name},\mathsf{City},\mathsf{Age}} (\sigma_{\mathsf{City} \neq \mathsf{'Edinburgh'} \land \mathsf{Age} < 33}(\mathsf{Customer}))$$

$$Q_2 = \sigma_{\mathsf{City} \neq '\mathsf{Edinburgh'} \, \land \, \mathsf{Age} < 33} \big(\pi_{\mathsf{Name}, \mathsf{City}, \mathsf{Age}} (\mathsf{Customer}) \big)$$

Question: Which one is more efficient?

8/21

Cartesian product

 $R \times S$ concatenates each tuple of R with all the tuples of S **Note:** the relations must have **disjoint** sets of attributes

Example

R	Α	В	×	S	С	D	=	$R \times S$	Α	В	C	D
	1		-		1	a			1	2	1	a
	3	4			2				1	2	2	b
	1				3	С			1	2	2 3 1 2	C
					ı				3	4	1	a
									3	4	2	b
									3	4	3	С

Expensive operation:

- $\operatorname{card}(R \times S) = \operatorname{card}(R) \times \operatorname{card}(S)$
- $arity(R \times S) = arity(R) + arity(S)$

Joining relations

Combining Cartesian product and selection

Customer: ID, Name, City, Address

Account: Number, Branch, CustID, Balance

We can join customers with the accounts they own as follows

$$\sigma_{\mathsf{ID}=\mathsf{CustID}}(\mathsf{Customer}\times\mathsf{Account})$$

10/21

Renaming

Gives new names to the attribute of a relation

```
Syntax: \rho_{\text{replacement}_1, ..., \text{replacement}_k}(\text{relation}) where each replacement has the form old \rightarrow new
```

Requirements

Let *X* is the set of attributes of the input relation, then

- The l.h.s. of each replacement belongs to *X*
- No two replacements have the same l.h.s.
- Composing the identity on *X* with all replacements results in an injective function

Examples of renaming

- $\rho_{D \to E}(R)$ and $\rho_{B \to A}(R)$ are illegal (why?)
- $\rho_{A \to B, B \to A}(R)$ is **legal** (what does it do?)
- $\rho_{A \to B, B \to A, A \to E}(R)$ is also **illegal** (why?)

12/21

Natural join

Joins two tables for equality on their common attributes

Example

Customer: CustID, Name, City, Address

Account: Number, Branch, CustID, Balance

Customer \bowtie Account \equiv

$$\pi_{\textit{X} \cup \textit{Y}} \big(\sigma_{\mathsf{CustID} = \mathsf{CustID'}} \big(\mathsf{Customer} \times \rho_{\mathsf{CustID} \to \mathsf{CustID'}} (\mathsf{Account}) \big) \big)$$

From SQL to relational algebra

SELECT \mapsto projection π FROM \mapsto Cartesian product \times WHERE \mapsto selection σ

SELECT
$$A_1, \ldots, A_m$$

FROM T_1, \ldots, T_n \mapsto $\pi_{A_1, \ldots, A_m} (\sigma_{\langle \text{condition} \rangle} (T_1 \times \cdots \times T_n))$
WHERE $\langle \text{condition} \rangle$

Common attributes in T_1, \ldots, T_n must be renamed

15/21

Set operations

Union

Intersection

Difference

The relations must have the same set of attributes

16/21

Union and renaming

R	Father	Child	S	Mother	Child
	George	Elizabeth		Elizabeth	Charles
	Philip Charles	Charles		Elizabeth	Andrew
	Charles	William		•	

We want to find the relation parent-child

$$\rho_{\mathsf{Father} \to \mathsf{Parent}}(\mathsf{R}) \cup \rho_{\mathsf{Mother} \to \mathsf{Parent}}(\mathsf{S}) \ = \ \begin{array}{c|c} \mathbf{Parent} & \mathbf{Child} \\ \hline \mathbf{George} & \mathsf{Elizabeth} \\ \mathsf{Philip} & \mathsf{Charles} \\ \mathsf{Charles} & \mathsf{William} \\ \mathsf{Elizabeth} & \mathsf{Charles} \\ \hline \mathbf{Elizabeth} & \mathsf{Andrew} \\ \end{array}$$

17/21

Full relational algebra

Primitive operations: π , σ , \times , ρ , \cup , -

Removing any of these results in a loss of expressive power

Derived operations

 \bowtie can be expressed in terms of π , σ , \times , ρ

 \cap can be expressed in terms difference:

$$R \cap S \equiv R - (R - S)$$

Other derived operations

Theta-join
$$R \bowtie_{\theta} S \equiv \sigma_{\theta}(R \times S)$$

Equijoin \bowtie_{θ} where θ is a conjunction of equalities

Semijoin
$$R \ltimes_{\theta} S \equiv \pi_X(R \bowtie_{\theta} S)$$

where X is the set of attributes of R

Antijoin
$$R \ltimes_{\theta} S \equiv R - (R \ltimes_{\theta} S)$$

Why use these operations?

- to write things more succintly
- they can be optimized independently

19/21

Division

R over set of attributes X

S over set of attributes $Y \subset X$

Let
$$Z = X - Y$$

$$R \div S = \left\{ r \in \pi_{Z}(R) \mid \text{for every } s \in S, \ rs \in R \right\}$$
$$= \left\{ r \in \pi_{Z}(R) \mid \{r\} \times S \subseteq R \right\}$$
$$= \pi_{Z}(R) - \pi_{Z}(\pi_{Z}(R) \times S - R)$$

Division: Example

	Exams	DPT
Student	Course	Course
John John Mary Mary Mary	Databases Networks Programming Math Databases	Databases Programming
E	xams ÷ DPT =	Student Mary

 $= \pi_{\mathsf{Student}}(\mathsf{Exams}) - \pi_{\mathsf{Student}}\big(\pi_{\mathsf{Student}}(\mathsf{Exams}) \times \mathsf{DPT} - \mathsf{Exams}\big)$

21/21

How can we express division in SQL?

Further Reading:

Matos, V.M. and Grasser, R., 2002. *A simpler (and better) SQL approach to relational division.* Journal of Information Systems Education, 13(2)