Introduction to Databases
(INFR10080)

(Transactions)

Instructor: Yang Cao

(Fall 2025) fwawé THE UNIVERSITY
Y- of EDINBURGH

Changelog

v25.0 Initial version

1/39

Transactions

Transaction: a sequence of operations on database objects

e All operations together form a single logical unit

Example

Transfer £100 from account A to account B
1. Read balance from A into local buffer x

x:= x— 100

Write new balance xto A

Read balance from B into local buffer y

y:=y+ 100

Write new balance yto B

oS U1 K~ WD

2/39

Life-cycle of a transaction

Active
Normal execution state

Partially Committed
Last statement executed

Failed
Normal execution cannot proceed

Partially
committed

Aborted
Rolled-back
Previous database state restored

Committed
Successful completion
Changes are permanent

3/39

The ACID properties

Atomicity
Either all operations are carried out or none are

Consistency
Successful execution of a transaction
leaves the database in a coherent state

Isolation
Each transaction is protected from the effects
of other transactions executed concurrently

Durability
On successful completion, changes persist

AID: properties of systems
C: database (data) property, not about database systems

4/39

Why Isolation?

One of the most critical guarantees that a database system offers:

(a) Database always moves from one consistent state to another
consistent state when a transaction commits

(b) Applications always see consistent database states.

Why challenging?

5/39

Concurrency

e Typically more than one transaction runs on a system
e Each transation consists of many I/O and CPU operations

e We don’t want to wait for a transaction to completely finish
before executing another

Concurrent execution
The operations of different transaction are interleaved

e increases throughput

e reduces response time

Without isolation, concurrency can cause inconsistent database states

6/39

Motivating example

71 : transfer £100 from account A to account B

Ty : transfer 10% of account A to account B

I T2

1. x:=read(A) 1. x:=read(A)

2. x:=x—100 2. yi=0.1x%x

3. write(x, A) 3. x:=x—y

4. y:= read(B) 4. write(x, A)

5. y:=y+100 5. z:= read(B)

6. write(y, B) 6. z:=z+4y
7. write(z, B)

Consistency: A + B should not change:
Money is not created and does not disappear

7/39

Motivating example: Serial execution 1

Database
A = 1000 B = 1000
A = 1000 B = 1000
A =900 B = 1000
A =900 B = 1000
A =900 B = 1000
A =900 B = 1100
A =900 B = 1100
A =900 B = 1100
A =900 B = 1100
A = 810 B = 1100
A =810 B = 1100
A = 810 B = 1100
A =810 B = 1190

Motivating example: Serial execution 2

I T2
1| x:=read(A)
2 | x:=x—100
3 | write(x, A)
4 | y:=read(B)
51| y:=y+ 100
6 | write(y, B)
7 x := read(A)
8 y:=0.1%x
9 Xi=XxX—y
10 write(x, A)
11 z:= read(B)
12 zZ:=z+y
13 write(z, B)
I T2
1 x := read(A)
2 y:=0.1*x
3 Xi=XxX—y
4 write(x, A)
5 z := read(B)
6 z:=z+y
7 write(z, B)
8 | x:=read(A)
9 | x:=x—100
10 | write(x, A)
11 | y:= read(B)
12 | y:=y+100
13 | write(y, B)

Database
A = 1000 B = 1000
A = 1000 B = 1000
A = 1000 B = 1000
A =900 B = 1000
A =900 B = 1000
A =900 B = 1000
A =900 B = 1100
A =900 B = 1100
A =900 B = 1100
A = 800 B = 1100
A = 800 B = 1100
A = 800 B = 1100
A = 800 B = 1200

8/39

9/39

Motivating example: Concurrent execution 1

Database
A = 1000 B = 1000
A = 1000 B = 1000
A =900 B = 1000
A =900 B = 1000
A =900 B = 1000
A =900 B = 1000
A = 810 B = 1000
A = 810 B = 1000
A =810 B = 1000
A = 810 B = 1100
A =810 B = 1100
A = 810 B = 1100
A =810 B = 1190

Motivating example: Concurrent execution 2

I T2
1| x:=read(A)
2 | x:=x—100
3 | write(x, A)
4 x := read(A)
5 y:=0.1%x
6 X:=XxX—y
7 write(x, A)
8 | y:=read(B)
9 | y:=y+ 100
10 | write(y, B)
11 z:= read(B)
12 zZ:=z+y
13 write(z, B)
I T2
1 | x:=read(A)
2 | x:=x—100
3 x := read(A)
4 y:=0.1*x
5 X:=XxX—y
6 write(x, A)
7 | write(x, A)
8 | y:=read(B)
9 | y:=y+100
10 | write(y, B)
11 z:=read(B)
12 zZ:=zZ+y
13 write(z, B)

Database
A = 1000 B = 1000
A = 1000 B = 1000
A = 1000 B = 1000
A = 1000 B = 1000
A = 1000 B = 1000
A =900 B = 1000
A =900 B = 1000
A =900 B = 1000
A =900 B = 1000
A =900 B = 1100
A =900 B = 1100
A =900 B = 1100
A =900 B = 1200

We created £100 !!!

10/39

11/39

Real-life case: AWS outage / worldwide chaos

News: https://www.bbc.co.uk/news/live/c5y8k7k6vlrt, https://www.theguardian.

com /technology/2025/oct/24 /amazon-reveals-cause-of-aws-outage

Date: 20 October 2025

Location: AWS’s US-EAST-1 region, located in Northern Virginia.
Direct cause: empty DNS record for DynamoDB in US-EAST-1 region
Consequences: 1000+ services (e.g., Learn) down, cascading failures

Root cause: poor DNS routing design without sufficient isolation

12/39

How to avoid isolation issues?

Concurrency Control

12/39

https://www.bbc.co.uk/news/live/c5y8k7k6v1rt
https://www.theguardian.com/technology/2025/oct/24/amazon-reveals-cause-of-aws-outage
https://www.theguardian.com/technology/2025/oct/24/amazon-reveals-cause-of-aws-outage
https://www.bbc.co.uk/news/live/c5y8k7k6v1rt
https://www.theguardian.com/technology/2025/oct/24/amazon-reveals-cause-of-aws-outage
https://www.theguardian.com/technology/2025/oct/24/amazon-reveals-cause-of-aws-outage

Concurrency Control

Concurrency control protocols:
algorithmic rules to be followed by each individual transaction

permit only concurrent executions with correct isolation

We need formalisation to make these notions concrete

Transaction model

The only important operations in scheduling are read and write
r(A) read data item A
w(A) write data item A

Other operations do not affect the schedule
We represent transactions by a sequence of read/write operations
The transactions in the motivating example are represented as:

71 :r(A), w(A), r(B), w(B)
To 2 r(A), w(A), r(B), w(B)

13/39

14/39

Transaction model: Schedules

Schedule: a sequence S of operations from a set of transactions
s.t. the order of operations in each transaction is the same as in §

A schedule is serial if all operations of each transaction
are executed before or after all operations of another transaction

Example

Concurrent schedule Serial schedule

I b A b

1 opl 1 opl

1 :opl, op2, op3 2 | opt) op2
Iy :opl, op2 3 | op2 3 | opl
4 op2 4 | op2
5 | op3 5| op3

15/39

Transaction model: Schedules

The schedules in the motivating example are represented as:

Schedule 1 Schedule 2
A 1o A To
r(A) r(A)
w(A) r(A)
r(A) w(A)
w(A) w(A)
r(B) r(B)
w(B) w(B)
r(B) r(B)
w(B) w(B)

Alternative notation
Schedule 1 : r (/4), W1 (/4), FQ(A), WQ(A), rl(B), Wl([)’), FQ(B), W2(B)

Schedule 2 : r1(A), r2(A), wa(A), wi (A), r1(B), w1 (B), ra(B), wa(B) 65

Transaction model: Schedules

The schedules in the motivating example are represented as:

Schedule 1 Schedule 2
I T2 I T2
r(A) r(A)
w(A) r(A)
r(A) w(A)
w(A) w(A)
r(B) r(B)
w(B) w(B)
r(B) r(B)
w(B) w(B)

Schedule 1 is equivalent to a serial execution, Schedule 2 is not

17/39

Serializability

Two operations (from different transactions) are conflicting if
e they refer to the same data item, and

e at least one of them is a write

In a schedule, two consecutive non-conflicting operations
(from different transactions) can be swapped

A schedule is conflict serializable if it can be transformed
into a serial schedule by a sequence of swap operations

18/39

Precedence graph

Captures all potential conflicts between transactions in a schedule
e Each node is a transaction

e There is an edge from T;to T; (for T; # T) if an action of T;
precedes and conflicts with one of T/s actions

A schedule is conflict serializable
if and only if

its precedence graph is acyclic

An equivalent serial schedule is given by any topological sort
over the precedence graph

Precedence graph: Example

Schedule 1 Schedule 2
I T2 I T2
r(A) r(A)
w(A) r(A)
r(A) w(A)
w(A) w(A)
(B) (B)
w(B) w(B)
(B) (B)
w(B) w(B)
Precedence graph Precedence graph

O

(serializable schedule)

19/39

20/39

Lock-based concurrency control

Lock
e Bookkepeing object associated with a data item
e Tells whether the data item is available for read and/or write

e Owner: Transaction currently operating on the data item

Shared lock Data item is available for read to owner
Can be acquired by more than one transaction

Exclusive lock Data item is available for read/write to owner
Cannot be acquired by other transactions

Two locks on the same data item are conflicting
if one of them is exclusive

Transaction model with locks

21/39

Additional /ock operations (injected by lock-based protocols at runtime):

s(A) shared lock on A is acquired
x(A) exclusive lock on A is acquired

u(A) lock on Ais released

In a schedule:

e A transaction cannot acquire a lock on A
before all exclusive locks on A have been released

e A transaction cannot acquire an exclusive lock on A
before all locks on A have been released

22/39

Examples of schedules with locking

Only lock operations are shown (also referred to as lock schedules):

Schedule 1 Schedule 2
At 7o it b
x(A) s(A)
u(A) s(A)
x(A) u(A)
u(A) u(A)
x(B) x(A)
u(B) u(A)
x(A)
x(B) x(B)
u(B) u(B)
x(B)
u(B)
u(A)
23/39

Two-Phase Locking (2PL)

A lock-based concurrency control protocol:

1. Before reading/writing a data item
a transaction must acquire a shared/exclusive lock on it

2. A transaction cannot request additional locks
once it releases any lock

Each transaction has
Growing phase when locks are acquired

Shrinking phase when locks are released

The protocol does not need to know all the reads/writes that a
transaction will execute ahead of time.

24/39

Two-Phase Locking (2PL)

Isolation guarantee:

Every completed schedule of transactions that follow the 2PL
protocol is conflict serializable

Not every completed serializable schedule is permitted by 2PL (okay)

However, under 2PL, a schedule may not complete ... (not okay)

25/39

Deadlocks

A transaction requesting a lock must wait
until all conflicting locks are released

We may get a cycle of “waits” (during Growing phase of 2PL)

T T2 IE
1 s(A)
2 x(B)
3 | reqs(B)
4 s(C)
5 req x(C)
6 req x(A)

71 waits for 7o, To waits for 73, T3 waits for Ty

26/39

Deadlock prevention

Each transaction is assigned a priority using a timestamp:
The older a transaction is, the higher priority it has

Suppose T; requests a lock and T7; holds a conflicting lock

Two policies to prevent deadlocks:
Wait-die: T; waits if it has higher priority, otherwise aborted
Wound-wait: T; aborted if T7; has higher priority, otherwise T; waits

In both schemes, the higher priority transaction is never aborted

Starvation: a transaction keeps being aborted
because it never has sufficiently high priority

Solution: restart aborted transactions with their initial timestamp

Deadlock detection

Waits-for graph
e Nodes are active transactions

e There is an edge from T;to T; (with T; # T))
if 7; waits for T; to release a (conflicting) lock

Each cycle represents a deadlock

Recovering from deadlocks
I//

Choose a “minimal” set of transactions such that
rolling them back will make the waits-for graph acyclic

27/39

28/39

Schedules with aborted transations

To account for unsuccessful execution of transactions, we need to explicitly
take into account abort and commit in transaction schedules.

Changes (writes) of T are persisted in the database only after T commits.
Writes before commit can be seen by concurrent transactions, though.
Aborted transaction will roll back: all its effect on database will be reverted.

Under 2PL, to resolve deadlock, a transaction in the shrinking phase will
never be picked as the “victim” (i.e., be forced to abort).

However, transaction aborts can be caused by many other factors other than
deadlock, e.g., constraint violation, triggers, or hardware failure.

29/39
Example: Transaction abort and roll back
Example: abort caused by constraint violation (application logic)
T: transfer money between accounts A ($9,000) and B ($9,950):
1. x(A) (Growing)
2. x(B) (Growing) Constraint (or application logic):
3. write(A — 100, A)
4. u(A) (Shrinking phase begins) “No account can ever hold more
5. write(B + 100, B) than $10,000.
6. u(B)

Database system (resp. application code) will abort Twhen it tries to
update B with B+ 100, which would violate the constraint (resp.
application logic) if committed. A ROLLBACK command will be issued.

Even though Twas in its shrinking phase, the entire transaction is
aborted. The changes to both accounts A and B are undone (rollback).
30/39

Cascading abort

Aborting one transaction may force another transaction to abort, and so on

I T2
11 r(A)
2 | w(A) e 75 read uncommited changes made by T7;
3 r(A) e But 72 has not yet committed
4 w(A) e We can recover by aborting also 75
)4 8
> r(B) (cascading abort)
6 w(B)
7 | Abort
31/39
Cascading abort
I T2
11 r(A)
2 | w(A)
3 r(A) e 75 read uncommited changes made by Ty
4 w(A) e But 72 has already committed
> "(8) e The schedule is unrecoverable
6 w(B)
7 Commit
8 | Abort

Recoverable schedules without cascading aborts

Transactions commit only after, and if,
all transactions whose changes they read commit

32/39

2PL and aborted transactions

1 T2
1| x(A)
§ u(A) (A e 771 and 75 follow 2PL

S

4 «(B) e 75 reads uncommited changes made by 73
5 u(A) e But 73 cannot be undone
6 u(B e The schedule is unrecoverable
7 Commit
8 | Abort

To summarize, 2PL permits
(some) conflict serializable schedules,
schedules with deadlocks (resolvable), and

unrecoverable schedules (222)

33/39

33/39

Strict 2PL

1. Growing phase: same as 2PL, before reading/writing a data item
a transaction must acquire a shared/exclusive lock on it

2. No Shrinking phase: The transaction holds all its locks until it
is completed (aborts or commits)

3. Lock Release: All locks are released at once in the end.

Ensures that
e The schedule is always recoverable

e All aborted transactions can be rolled back
without cascading aborts

e The schedule consisting of the committed transactions
is conflict serializable

34/39

Concurrency Control, revisted

Concurrency control protocols:
algorithmic rules to be followed by each individual transaction

permit only concurrent executions with correct isolation

Questions: (not examinable, but very important)

protocols that are not lock-based?
permit all and only conflict-serializable schedules?

correct isolation = conflict serializability? can we challenge this?

35/39

The ACID properties

Atomicity
Either all operations are carried out or none are

Consistency
Successful execution of a transaction
leaves the database in a coherent state

Isolation
Each transaction is protected from the effects
of other transactions executed concurrently

Durability
On successful completion, changes persist

36/39

Crash recovery

The log (a.k.a. trail or journal)
Records every action executed on the database
Each log record has a unique ID called log sequence number (LSN)
Fields in a log record:

LSN ID of the record

prevLSN LSN of previous log record
transID 1D of the transaction
type of action recorded
before value before the change

after value after the change

The state of the database is periodically recorded as a checkpoint

37/39

ARIES

Recovery algorithm used in major DBMSs

Works in three phases

1. Analysis

» identify changes that have not been written to disk
» identify active transactions at the time of crash

2. Redo

» repeat all actions starting from latest checkpoint
P restore the database to the state at the time of crash

3. Undo

» undo actions of transactions that did not commit
» the database reflects only actions of committed transactions

38/39

Principles behind ARIES

Write-Ahead Logging

Before writing a change to disk, a corresponding log record must be
inserted and the log forced to stable storable

Repeating history during Redo

Actions before the crash are retraced to bring the database to the state it
was when the system crashed

Logging changes during Undo

Changes made while undoing transactions are also logged
(protection from further crashes)

39/39

