Introduction to Databases
(INFR10080)

(The NULL value)

Instructor: Yang Cao

(Fall 2025) €9\ THE UNIVERSITY
N¢V)- of EDINBURGH

Changelog

v25.0 Initial version

1/24

NULL: all-purpose marker to represent incomplete information
Main source of problems and inconsistencies

“...this topic cannot be described in a manner that is simulta-
neously both comprehensive and comprehensible”

“Those SQL features are ...fundamentally at odds with the way
the world behaves”

— C. Date & H. Darwen, A Guide to SQL Standard

What does NULL mean?

Depending on the context:
Missing value — there is a value, but it is currently unknown

Non-applicable — there is no value (undefined)

But it also behaves as:
Constant — like any other value

Unknown — a truth-value in addition to True and False

Meta-incompleteness

We never really know what NULL means
because the meaning is ultimately defined by the application

But we must know how NULL behaves according to the Standard
and this behavior depends on the context in which it is used

2/24

3/24

Missing value vs. Non-applicable

Person

ID Name Phone

1 Jane NULL Does Jane have a phone?
2 John NULL Does John have a phone?

There is no way of knowing whether a NULL here means that
e there is a currently unknown value for phone (missing value)
or

e there is no value for phone (non-applicable value)

4/24

NULL and schema design

Person

ID Name HasPhone Phone

1 Jane Yes NULL <— missing
2 John No NULL < non-applicable

What if we want Phone to be NOT NULL
when HasPhone is Yes?

e we cannot just declare Phone as NOT NULL

e we need to use a CHECK constraint
We also want to check that Phone is NULL when HasPhone is No

5/24

NULL and schema design

Person

ID Name HasPhone Phone

1 Jane NULL NULL
2 John NULL 12341

We don’t know whether John and Jane have a Phone
e NULL in column HasPhone represents a missing value
e What does NULL in column Phone mean?

What about the value 12341 for John’s Phone?
e Rule out these cases with a CHECK constraint
e Declare HasPhone to be NOT NULL

(we cannot say we don’t know whether a person has a Phone)

NULL and schema design
Person PersonWithPhone
ID Name ID Name Phone
2 John 1 Jane NULL

Pros:

e NULLSs in Phone represent missing values
e Phone can be declared NOT NULL if needs be

Cons:
e Need to make sure there is no overlap (assertion? trigger?)

e How do we say “l don’t know whether John has a Phone”?
(we could add a column HasPhone to Person...)

6/24

7/24

NULL and schema design

Person PersonWithPhone
ID Name 1D Phone
1 Jane 1 NULL
2 John

PersonWithPhone(ID) REFERENCES Person(ID)

Pros:

e NULLSs in Phone represent missing values
e Phone can be declared NOT NULL if needs be

Cons:

e How do we say “l don’t know whether John has a Phone”?
(we could add a column HasPhone to Person...)

8/24

Limitations of SQL's NULL as missing values

Person
Name Age
Jane NULL Age of Jane, John and Carl is unknown
John NULL
Mary 27 We know Jane and John have the same age
Carl NULL

Marked nulls (not part of SQL)

e Each missing value has an identifier

e Allow cross-referencing of missing values

9/24

NULL and constraints

Nulls are not allowed in primary keys

CREATE TABLE R (A INT PRIMARY KEY);
INSERT INTO R VALUES (NULL);

ERROR: null value in column ”a” violates not-null constraint

Nulls seem to behave as (distinct) missing values with UNIQUE

R
CREATE TABLE R (A INT UNIQUE); A
INSERT INTO R VALUES (NULL); _
INSERT INTO R VALUES (NULL); NULL

NULL

but in fact this is simply because NULLs are ignored

NULL and constraints

R S
A B A B
S(A,B) REFERENCES R(A,B)
1T 1 1 NULL
2 NULL

Is NULL treated as a missing value here? Not really!

The above instance is legal w.r.t. the FK constraint

10/24

11/24

NULL and arithmetic operations

Every arithmetic operation that involves a NULL results in NULL

SELECT 14+NULL AS sum , 1-NULL AS diff,
1*NULL AS mult, 1/NULL AS div

sum | diff | mult | div
------ e
NULL | NULL | NULL | NULL
(1 row)

Observe that SELECT NULL/0 also returns NULL
instead of throwing a DIVISION BY ZERO error!

Here, NULL is treated as an undefined value

NULL and aggregation (1)

Aggregate functions ignore nulls

Consider R = {0, NULL, 1, NULL} on attribute A

SELECT MIN(A), MAX(A), COUNT(A), SUM(A),
CAST(AVG(A) AS numeric(2,1))

FROM R ;

min | max | count | sum | avg

————— s
0] 1| 2| 1] 0.5

(1 row)

12/24

14/24

NULL and aggregation (2)

Aggregate functions ignore nulls

Consider R= {0, NULL, 1, NULL} on attribute A

Exception:

SELECT COUNT(*) FROM R ;

NULL and aggregation

Aggregation (except COUNT) on an empty bag results in NULL
Consider R = {0, 1, NULL} on attribute A

SELECT MIN(A), MAX(A), SUM(A), AVG(A), COUNT(A)
FROM R

WHERE A = 2 ;
min | max | sum | avg | count
------ e
NULL | NULL | NULL | NULL | 0
(1 row)

The semantics of these nulls is that of undefined values

15/24

14/24

NULL and set operations

What is the answer to

Q:: SELECT * FROM R UNION SELECT * FROM S
(Q>: SELECT * FROM R INTERSECT SELECT * FROM S
Q3 SELECT * FROM R EXCEPT SELECT * FROM S

when R = {1,NULL,NULL} and § = {NULL}?

e Answerto Q: {1, NULL}
e Answerto Qo: {NULL}
e Answerto Qs: {1}

In set operations NULL is treated like any other value

15/24

NULL and set operations

What is the answer to

Q.: SELECT * FROM R UNION ALL SELECT * FROM S
(J>: SELECT * FROM R INTERSECT ALL SELECT * FROM S
(J3: SELECT * FROM R EXCEPT ALL SELECT * FROM S

when R = {1,NULL, NULL} and § = {NULL}?

e Answer to Qi: {1, NULL, NULL, NULL}
e Answerto Qo: {NULL}
e Answerto Q3: {1, NULL}

16/24

What is the answer to

NULL in selection conditions (1)

Q,: SELECT * FROM R, S WHERE R.A = S.A
Q»: SELECT * FROM R, S WHERE R.A <> S.A
Qs: SELECT * FROM R, S WHERE R.A = S.A OR R.A <> S.A

when R = {1, NULL} and § = {NULL}?

R.A X S.A = R.A S.A
1 NULL 1 NULL
NULL NULL | NULL

Answer to all three queries: {}

17/24

NULL and comparisons

SELECT 1=NULL AS result;

This is not an undefined value — it is a truth-value: unknown

SELECT 1=NULL OR TRUE AS result;

Try: SELECT NULL/1 OR TRUE AS result;

18/24

Evaluation of selection conditions

SQL uses three truth values: true (t), false (f), unknown (u)

1. Every comparison (except IS [NOT] NULL and EXISTS)
where one of the arguments is NULL evaluates to unknown

2. The truth values assigned to each comparison are propagated using the

following tables:

AND| t f u OR | t f u NOT
t t f u t t t t t f
f f f f f t f U f t
u u f u u t u u u u
3. The rows for which the condition evaluates to true are returned
19/24

NULL in selection conditions (2)

What is the answer to

Q:: SELECT * FROM R, S WHERE R.A = S.A
(Q2: SELECT * FROM R, S WHERE R.A <> S.A

(Q3: SELECT * FROM R, S WHERE R.A = S.A OR R.A <> S.A

when R = {1, NULL} and $= {NULL}?

R.A S.A 01 05 03
1 NULL
NULL | NULL

20/24

Q1

SELECT R.A FROM R
INTERSECT
SELECT S.A FROM S

NULL and query equivalence (1)

Q2

SELECT DISTINCT R.A
FROM R, S
WHERE R.A = S.A

On databases without nulls, @y and > give the same answers

On databases with nulls, they do not

For example, when R = § = {NULL}
e Q returns {NULL}

e () returns {}

Qr:

o:

Qs:

21/24

NULL and query equivalence (2)
Consider R = {1, NULL} and § = {NULL}

SELECT R.A FROM R
EXCEPT
SELECT S.A FROM S ;

SELECT DISTINCT R.A
FROM R
WHERE NOT EXISTS (
SELECT *
FROM S
WHERE S.A=R.A);

SELECT DISTINCT R.A

FROM R

WHERE R.A NOT IN (
SELECT S.A
FROM S);

Answer: {1}

Answer: { 1, NULL }

Answer: {}

22/24

Inner joins

R S
A B C D
1 3 4 1
2 2 3 2

SELECT * FROM R [INNER] JOIN S ON R.B = S.C ;

A B C D
1 3 3 2
24/24
Outer joins (1)
R S

A B C D

1 3 4 1

2 2 302

SELECT * FROM R LEFT [OUTER] JOIN S ON R.B = S.C ;

A B C D Same as

SELECT * FROM R JOIN S ON R.B = S.C
1 3 3 2 UNION ALL
2 ? SELECT R.*, NULL, NULL FROM R

WHERE NOT' EXISTS (
SELECT * FROM S WHERE R.B = S.C)

25/24

Outer joins (2)

R S
A B C D
1T 3 4 1
2 2 3 2

SELECT * FROM R RIGHT [OUTER] JOIN S ON R.B = S.C ;

A B C D Same as

SELECT * FROM R JOIN S ON R.B = S.C
4 1 UNION ALL

1 3 3 9 SELECT NULL, NULL, S.* FROM S

WHERE NOT EXISTS (
SELECT * FROM R WHERE R.B = S.C)
2624
Outer joins (3)
R S

A B C D

1T 3 4 1

2 2 3 2

SELECT * FROM R FULL [OUTER] JOIN S ON R.B = S.C ;

Same as

SELECT * FROM R JOIN S ON R.B = S.C
UNION ALL
SELECT R.*, NULL, NULL FROM R
WHERE NOT EXISTS (
SELECT * FROM S WHERE R.B = S.C)
UNION ALL
SELECT NULL, NULL, S.* FROM S
WHERE NOT EXISTS (
SELECT * FROM R WHERE R.B = S.C)

CcC D
3 2

N —
N W | R

AN

—_

27/24

Coalescing null values

Syntax: COALESCE(expr1, expr2)

Same as
CASE WHEN exprl IS NULL
THEN expr2
ELSE exprl
END
Example
A A
R: | SELECT COALESCE(R.A,0) AS A FROM R gives |
0
3

24/24

