Introduction to Databases

(INFR10080)

(Normal Forms)

Instructor: Yang Cao

(Fall 2025)

Changelog

v25.0 Initial version

Example of bad design

BAD

Title	Director	Theatre	Address	Time	Price
Inferno	Ron Howard	Vue	Omni Centre	20:00	11.50
Inferno	Ron Howard	Vue	Omni Centre	22:30	10.50
Inferno	Ron Howard	Odeon	Lothian Rd	20:00	10.00
Inferno	Ron Howard	Cineworld	Fountain Park	18:20	9.50
Inferno	Ron Howard	Cineworld	Fountain Park	21:00	11.00
Trolls	Mike Mitchell	Vue	Omni Centre	16:10	9.50
Trolls	Mike Mitchell	Vue	Omni Centre	19:30	10.00
Trolls	Mike Mitchell	Odeon	Lothian Rd	15:00	8.50
Trolls	Mike Mitchell	Cineworld	Fountain Park	17:15	9.00

{ Title \rightarrow Director; Theatre, Title, Time \rightarrow Price; Theatre \rightarrow Address }

2/21

Why is BAD bad?

Redundancy

Many facts are repeated

- For every showing we list both director and title
- For every movie playing we repeat the address

Update anomalies

- Address must be changed for all movies and showtimes
- If a movie stops playing, association title-director is lost
- Cannot add a movie before it starts playing

Good design

Movies: Title → Director

Title	Director	
Inferno	Ron Howard	
Trolls	Mike Mitchell	

Theatres: Theatre \rightarrow Address

Theatre	Address	
Vue	Omni Centre	
Odeon	Lothian Rd	
Cineworld	Fountain Park	

Showings: Theatre, Title, Time \rightarrow Price

Theatre	Title	Time	Price
Vue	Inferno	20:00	11.50
Vue	Inferno	22:30	10.50
Odeon	Inferno	20:00	10.00
Cineworld	Inferno	18:20	9.50
Cineworld	Inferno	21:00	11.00
Vue	Trolls	16:10	9.50
Vue	Trolls	19:30	10.00
Odeon	Trolls	15:00	8.50
Cineworld	Trolls	17:15	9.00

4/21

Why is GOOD good?

No redundancy

Every FD defines a key

No information loss

Movies = $\pi_{\text{Title,Director}}(BAD)$

Theatres = $\pi_{\text{Theatre}, \text{Address}}(BAD)$

Showings = $\pi_{\text{Theatre,Title,Time,Price}}(BAD)$

 $BAD = Movies \bowtie Theatres \bowtie Showings$

No constraints are lost

All of the original FDs appear as constraints in the new tables

Boyce-Codd Normal Form (BCNF)

Problems with bad designs are caused by non-trivial FDs $X \rightarrow Y$ where X is not a key

A relation with FDs Σ is in BCNF if for every $X \rightarrow Y$ in Σ

- $Y \subseteq X$ (the FD is trivial), or
- X is a key

A database is in BCNF if all relations are in BCNF

6/21

Decompositions

Given a set of attributes U and a set of FDs Σ , a decomposition of (U, Σ) is a set

$$(U_1, \Sigma_1), \ldots, (U_n, \Sigma_n)$$

such that $U = \bigcup_{i=1}^{n} U_i$ and Σ_i is a set of FDs over U_i

BCNF decomposition if each (U_i, Σ_i) is in BCNF

Criteria for good decompositions

Losslessness: no information is lost

Dependency preservation: no constraints are lost

Good decompositions

A decomposition of (U, Σ) into $(U_1, \Sigma_1), \ldots, (U_n, \Sigma_n)$ is

Lossless if for every relation R over U that satisfies Σ

- ▶ each $\pi_{U_i}(R)$ satisfies Σ_i , and
- $R = \pi_{U_1}(R) \bowtie \cdots \bowtie \pi_{U_n}(R)$

Dependency preserving if Σ and $\bigcup_{i=1}^{n} \Sigma_{i}$ are equivalent (that is, they have the same closure)

8/21

Projection of FDs

Let Σ be a set of FDs over attributes U

The **projection** of Σ on $V \subseteq U$

$$\pi_{V}(\Sigma) = \{ (X \to Y) \in \Sigma^{+} \mid X, Y \subseteq V \}$$

is the set of all FDs over V that are implied by Σ

BCNF decomposition algorithm

(non-examinable)

Input: A set of attributes U and a set of FDs Σ

Output: A database schema *S*

- 1. $S := \{(U, \Sigma)\}$
- 2. While there is $(U_i, \Sigma_i) \in S$ not in BCNF: Replace (U_i, Σ_i) by **decompose** (U_i, Σ_i)
- 3. Remove any (U_i, Σ_i) for which there is (U_j, Σ_j) with $U_i \subseteq U_j$
- 4. Return S

Subprocedure **decompose**(U, Σ):

- 1. Choose $(X \to Y) \in \Sigma$ that violates BCNF
- 2. Set $V := C_{\Sigma}(X)$ and Z := U V
- 3. Return $(V, \pi_V(\Sigma))$ and $(XZ, \pi_{XZ}(\Sigma))$

10/21

Properties of the BCNF algorithm

(non-examinable)

- The decomposed schema is in BCNF and lossless-join
- The output depends on the FDs chosen to decompose
- Dependency preservation is not guaranteed

Example

Apply the BCNF algorithm to the BAD schema (blackboard)

BCNF and dependency preservation

Take the relation Lectures : Class, Professor, Time

with FDs
$$\Sigma = \{C \rightarrow P, PT \rightarrow C\}$$

 $(\mathcal{O}T, \Sigma)$ is **not in BCNF**:

$$(C \rightarrow P) \in \Sigma$$
 is non-trivial and C is not a key

If we decompose using the BCNF algorithm we get

$$(\mathcal{O}, C \rightarrow P)$$
 and (CT, \emptyset)

We lose the constraint $PT \rightarrow C$

12/21

Third Normal Form (3NF)

 (U, Σ) is in 3NF if for every FD $X \to Y$ in Σ one of the following holds:

- $Y \subseteq X$ (the FD is trivial)
- *X* is a key
- all of the attributes in *Y* are prime

Intuition: in 3NF FDs where the l.h.s. is not a key are allowed as long as the r.h.s. consists only of prime attributes

Every schema in BCNF is also in 3NF

3NF and redundancy

Consider again the relation Lectures : Class, Professor, Time with FDs $\Sigma = \{C \rightarrow P, PT \rightarrow C\}$

 $(\mathcal{P}T, \Sigma)$ is in 3NF: PT is a candidate key, so P is prime

More redundancy than in BCNF

- each time a class appears in a tuple, professor's name is repeated
- we tolerate this because there is no BCNF decomposition that preserves dependencies

14/21

Minimal covers

Let Σ and Γ be sets of FDs

 Γ is a cover of Σ if $\Gamma^+ = \Sigma^+$

Minimal if

- Each FD in Γ has the form $X \to A$
- No proper subset of Γ is a cover (we cannot remove FDs without losing equivalence to Σ)
- For $(X \to A) \in \Gamma$ and $X' \subset X$, $A \notin C_{\Sigma}(X')$ (we cannot remove attributes from the LHS of FDs in Γ)

Intuition: Γ is a small representation of all FDs in Σ

Finding minimal covers

1. Put the FDs in standard form: only one attribute on RHS Use Armstrong's decomposition axiom

$$X \to A_1 \cdots A_n$$
 is split into *n* FDs: $X \to A_1, \dots, X \to A_n$

2. Minimize the LHS of each FD

Check whether attributes in the LHS can be removed

For
$$(X \to A) \in \Sigma$$
 and $X' \subset X$ check whether $A \in C_{\Sigma}(X')$
If yes, replace $X \to A$ by $X' \to A$ and repeat

3. Delete redundant FDs

$$(X \rightarrow A) \in \Sigma$$
, check whether $\Sigma - \{X \rightarrow A\} \models X \rightarrow A$

16/21

Finding minimal covers: Example

Consider the FDs
$$\{ABCD \rightarrow E, E \rightarrow D, A \rightarrow B, AC \rightarrow D\}$$

1. Already in standard form

$$\{ABCD \rightarrow E, E \rightarrow D, A \rightarrow B, AC \rightarrow D\}$$

2. The LHS of $ABCD \rightarrow E$ can be replaced by AC

$$\{AC \rightarrow E, E \rightarrow D, A \rightarrow B, AC \rightarrow D\}$$

3. The last FD is redundant (implied by the first two)

$$\{AC \rightarrow E, E \rightarrow D, A \rightarrow B\}$$

3NF synthesis algorithm

Input: A set of attributes U and a set of FDs Σ

Output: A database schema *S*

- 1. $S := \emptyset$
- 2. Find a minimal cover Γ of Σ
- 3. Replace all FDs $X \to A_1, \dots, X \to A_n$ in Γ by $X \to A_1 \cdots A_n$ (note that the FDs have the same l.h.s.)
- 4. For each FD $(X \rightarrow Y) \in \Gamma$, add $(XY, X \rightarrow Y)$ to S
- 5. If no (U_i, Σ_i) in S is such that U_i is key for (U, Σ) , find a key K for (U, Σ) and add (K, \emptyset) to S
- 6. If *S* contains (U_i, Σ_i) and (U_j, Σ_j) with $U_i \subseteq U_j$, replace them by $(U_j, \Sigma_i \cup \Sigma_j)$
- 7. Output S

18/21

Properties of the 3NF algorithm

The synthetized schema is

- in 3NF
- lossless-join
- dependency-preserving

Example

Apply the 3NF algorithm to the Lectures schema (blackboard) (that schema is already in 3NF, but let's do it anyway)

3NF synthesis: another example

Example

```
Input : (ABCD, \{A \rightarrow B, C \rightarrow B, BD \rightarrow A\})
Not in 3NF (the only candidate key is CD)
```

The given set of FDs is already minimal

Ouput :
$$\{(CB, \{C \rightarrow B\}),$$

 $(ABD, \{BD \rightarrow A, A \rightarrow B\}),$
 $(CD, \emptyset)\}$

20/21

Schema design: Summary

Given the set of attributes *U* and the set of FDs *F*

Find a lossless, dependency-preserving decomposition into:

BCNF if it exists

3NF if BCNF decomposition cannot be found

Database administrators may decide to **de-normalize** tables to reduce number of joins