
Introduction to Databases
(INFR10080)

(Normal Forms)

Instructor: Yang Cao

(Fall 2025)

Changelog

v25.0 Initial version

1/21



Example of bad design

BAD

Title Director Theatre Address Time Price

Inferno Ron Howard Vue Omni Centre 20:00 11.50
Inferno Ron Howard Vue Omni Centre 22:30 10.50
Inferno Ron Howard Odeon Lothian Rd 20:00 10.00
Inferno Ron Howard Cineworld Fountain Park 18:20 9.50
Inferno Ron Howard Cineworld Fountain Park 21:00 11.00
Trolls Mike Mitchell Vue Omni Centre 16:10 9.50
Trolls Mike Mitchell Vue Omni Centre 19:30 10.00
Trolls Mike Mitchell Odeon Lothian Rd 15:00 8.50
Trolls Mike Mitchell Cineworld Fountain Park 17:15 9.00

{ Title → Director ; Theatre,Title,Time → Price ; Theatre → Address }

2/21

Why is BAD bad?

Redundancy

Many facts are repeated

• For every showing we list both director and title

• For every movie playing we repeat the address

Update anomalies
• Address must be changed for all movies and showtimes

• If a movie stops playing, association title-director is lost

• Cannot add a movie before it starts playing

3/21



Good design

Movies: Title → Director

Title Director

Inferno Ron Howard
Trolls Mike Mitchell

Theatres: Theatre → Address

Theatre Address

Vue Omni Centre
Odeon Lothian Rd
Cineworld Fountain Park

Showings: Theatre,Title,Time → Price

Theatre Title Time Price

Vue Inferno 20:00 11.50
Vue Inferno 22:30 10.50
Odeon Inferno 20:00 10.00
Cineworld Inferno 18:20 9.50
Cineworld Inferno 21:00 11.00
Vue Trolls 16:10 9.50
Vue Trolls 19:30 10.00
Odeon Trolls 15:00 8.50
Cineworld Trolls 17:15 9.00

4/21

Why is GOOD good?

No redundancy

Every FD defines a key

No information loss

Movies = πTitle,Director(BAD)

Theatres = πTheatre,Address(BAD)

Showings = πTheatre,Title,Time,Price(BAD)

BAD = Movies ▷◁ Theatres ▷◁ Showings

No constraints are lost
All of the original FDs appear as constraints in the new tables

5/21



Boyce-Codd Normal Form (BCNF)

Problems with bad designs are caused by non-trivial FDs X → Y
where X is not a key

A relation with FDs Σ is in BCNF if for every X → Y in Σ

• Y ⊆ X (the FD is trivial), or

• X is a key

A database is in BCNF if all relations are in BCNF

6/21

Decompositions

Given a set of attributes U and a set of FDs Σ,
a decomposition of (U,Σ) is a set

(U1,Σ1), . . . , (Un,Σn)

such that U =
∪n

i=1 Ui and Σi is a set of FDs over Ui

BCNF decomposition if each (Ui,Σi) is in BCNF

Criteria for good decompositions

Losslessness: no information is lost

Dependency preservation: no constraints are lost

7/21



Good decompositions

A decomposition of (U,Σ) into (U1,Σ1), . . . , (Un,Σn) is

Lossless if for every relation R over U that satisfies Σ

▶ each πUi(R) satisfies Σi, and

▶ R = πU1(R) ▷◁ · · · ▷◁ πUn(R)

Dependency preserving if Σ and
∪n

i=1Σi are equivalent
(that is, they have the same closure)

8/21

Projection of FDs

Let Σ be a set of FDs over attributes U

The projection of Σ on V ⊆ U

πV(Σ) = {(X → Y) ∈ Σ+ | X, Y ⊆ V}

is the set of all FDs over V that are implied by Σ

9/21



BCNF decomposition algorithm (non-examinable)

Input: A set of attributes U and a set of FDs Σ

Output: A database schema S

1. S := {(U,Σ)}
2. While there is (Ui,Σi) ∈ S not in BCNF:

Replace (Ui,Σi) by decompose(Ui,Σi)

3. Remove any (Ui,Σi) for which there is (Uj,Σj) with Ui ⊆ Uj

4. Return S

Subprocedure decompose(U,Σ):

1. Choose (X → Y) ∈ Σ that violates BCNF

2. Set V := CΣ(X) and Z := U− V

3. Return
(
V, πV(Σ)

)
and

(
XZ, πXZ(Σ)

)
10/21

Properties of the BCNF algorithm (non-examinable)

• The decomposed schema is in BCNF and lossless-join

• The output depends on the FDs chosen to decompose

• Dependency preservation is not guaranteed

Example

Apply the BCNF algorithm to the BAD schema (blackboard)

11/21



BCNF and dependency preservation

Take the relation Lectures : Class, Professor, Time
with FDs Σ = {C → P, PT → C}

(CPT, Σ) is not in BCNF:

(C → P) ∈ Σ is non-trivial and C is not a key

If we decompose using the BCNF algorithm we get

(CP, C → P) and (CT, ∅)

We lose the constraint PT → C

12/21

Third Normal Form (3NF)

(U,Σ) is in 3NF if for every FD X → Y in Σ
one of the following holds:

• Y ⊆ X (the FD is trivial)

• X is a key

• all of the attributes in Y are prime

Intuition: in 3NF FDs where the l.h.s. is not a key are allowed
as long as the r.h.s. consists only of prime attributes

Every schema in BCNF is also in 3NF

13/21



3NF and redundancy

Consider again the relation Lectures : Class, Professor, Time
with FDs Σ = {C → P, PT → C}

(CPT,Σ) is in 3NF: PT is a candidate key, so P is prime

More redundancy than in BCNF

• each time a class appears in a tuple,
professor’s name is repeated

• we tolerate this because there is no BCNF decomposition
that preserves dependencies

14/21

Minimal covers

Let Σ and Γ be sets of FDs

Γ is a cover of Σ if Γ+ = Σ+

Minimal if

• Each FD in Γ has the form X → A

• No proper subset of Γ is a cover
(we cannot remove FDs without losing equivalence to Σ)

• For (X → A) ∈ Γ and X′ ⊂ X, A ̸∈ CΣ(X′)
(we cannot remove attributes from the LHS of FDs in Γ)

Intuition: Γ is a small representation of all FDs in Σ

15/21



Finding minimal covers

1. Put the FDs in standard form: only one attribute on RHS
Use Armstrong’s decomposition axiom

X → A1 · · ·An is split into n FDs: X → A1, . . . , X → An

2. Minimize the LHS of each FD
Check whether attributes in the LHS can be removed

For (X → A) ∈ Σ and X′ ⊂ X check whether A ∈ CΣ(X′)
If yes, replace X → A by X′ → A and repeat

3. Delete redundant FDs
(X → A) ∈ Σ, check whether Σ− {X → A} |= X → A

16/21

Finding minimal covers: Example

Consider the FDs {ABCD → E, E → D,A → B,AC → D}

1. Already in standard form

{ABCD → E, E → D,A → B,AC → D}

2. The LHS of ABCD → E can be replaced by AC

{AC → E, E → D,A → B,AC → D}

3. The last FD is redundant (implied by the first two)

{AC → E, E → D,A → B}

17/21



3NF synthesis algorithm

Input : A set of attributes U and a set of FDs Σ

Output : A database schema S

1. S := ∅
2. Find a minimal cover Γ of Σ

3. Replace all FDs X → A1, . . . , X → An in Γ
by X → A1 · · ·An (note that the FDs have the same l.h.s.)

4. For each FD (X → Y) ∈ Γ, add (XY, X → Y) to S

5. If no (Ui,Σi) in S is such that Ui is key for (U,Σ),
find a key K for (U,Σ) and add (K,∅) to S

6. If S contains (Ui,Σi) and (Uj,Σj) with Ui ⊆ Uj,
replace them by (Uj,Σi ∪ Σj)

7. Output S

18/21

Properties of the 3NF algorithm

The synthetized schema is

• in 3NF

• lossless-join

• dependency-preserving

Example

Apply the 3NF algorithm to the Lectures schema (blackboard)
(that schema is already in 3NF, but let’s do it anyway)

19/21



3NF synthesis: another example

Example

Input :
(
ABCD, {A → B,C → B, BD → A}

)
Not in 3NF (the only candidate key is CD)

The given set of FDs is already minimal

Ouput :
{
(CB, {C → B}),
(ABD, {BD → A,A → B}),
(CD,∅)

}

20/21

Schema design: Summary

Given the set of attributes U and the set of FDs F

Find a lossless, dependency-preserving decomposition into:

BCNF if it exists

3NF if BCNF decomposition cannot be found

Database administrators may decide to de-normalize tables
to reduce number of joins

21/21


