
Introduction to Databases
(INFR10080)

(Deductive Databases)

Instructor: Yang Cao

(Fall 2025)

Changelog

v25.0 Initial version

1/23



Datalog rules (1)

H(x̄)︸︷︷︸
head

:− S1(x̄1), . . . , Sn(x̄n)︸ ︷︷ ︸
body

Head predicate over variables and constants

Body conjunction of possibly negated atoms (subgoals)

• relational atoms (predicates)
• comparisons between variables/constants

• Head variables are implicitly universally quantified

• Body variables not in head are existentially quantified

• Rule: Body → Head (if the body is true, the head is true)

2/23

Datalog rules (2)

Example

Lucky(x) :− Customer(x, y, z),Account(u, z, x,w),w > 10000

In relational calculus we could write:

Lucky =
{
x | ∃y, z, u,w Customer(x, y, z)

∧ Account(u, z, x,w) ∧ w > 10000
}

Safety

Every variable (in head or body)
appears in at least one non-negated relational atom

Not safe: BigNumber(x) :− x > 1000000000

3/23



Datalog programs

Program = set of Datalog rules

Example

Parent(x, y) :−Mother(x, y)

Parent(x, y) :− Father(x, y)

edb (extensional database) relations stored in the database
▶ can appear only in the body of rules

idb (intensional database) derived relations
▶ can appear both in the head or body of rules

4/23

From relational algebra to Datalog

Every relational algebra expression can be translated into Datalog

Projection π#2(R)

E(x) :− R(y, x)

Selection σ#1 op c(R)

E(x, y) :− R(x, y), x op c

Product R× S

E(x, y,w, z) :− R(x, y), S(w, z)

Difference R− S

E(x, y) :− R(x, y),¬S(x, y)

Union R ∪ S

E(x, y) :− R(x, y)
E(x, y) :− S(x, y)

5/23



From relational algebra to Datalog

Let R and S be relations over A, B

E = πA,D

(
σB=C

(
R× ρA→C, B→D(S)︸ ︷︷ ︸

E1

)
︸ ︷︷ ︸

E2

)

︸ ︷︷ ︸
E3

∪ ρB→D(R− S)︸ ︷︷ ︸
E4

E1(x, u,w, y) :− R(x, u), S(w, y)

E2(x, u,w, y) :− E1(x, u,w, y), u = w

E3(x, y) :− E2(x, u,w, y)

E4(x, y) :− R(x, y),¬S(x, y)
E(x, y) :− E3(x, y)

E(x, y) :− E4(x, y)

6/23

Limitations of relational algebra/calculus

Parent = table of pairs x, y where x is the parent of y

Parent = {x, y | Parent(x, y)}
Grandparent = {x, y | ∃z Parent(x, z) ∧ Parent(z, y)}

Great-grandparent = {x, y | ∃z Grandparent(x, z) ∧ Parent(z, y)}

For a given k, we can express the query Ancestork

But
We cannot express the Ancestor relation itself
that is: an Ancestork query that works for every k

7/23



Recursion in Datalog

The head relation of a rule can appear in its body

Ancestor(x, y) :− Parent(x, y)

Ancestor(x, y) :− Ancestor(x, z), Parent(z, y)

Intuition
x is an ancestor of y if

x is a parent of y

or

x is an ancestor of a parent of y

8/23

Dependency graph

IDB predicate P depends on (IDB) predicate Q
if there is a rule with P in the head and Q in a subgoal

Dependency graph

nodes IDB predicates

edges P → Q if P depends on Q

A cycle in the dependency graph means the program is recursive

C(x) :− A(y, x)

C(x) :− S(x, y), y > 1

B(x, y) :− C(x), P(x, y)

A(x, y) :− B(y, x)

A

BC

9/23



Iterative Fixpoint Evaluation

10/23

Evaluation of recursive programs

• The Parent relation (EDB) never changes

• The Ancestor relation (IDB) is initially empty

Ancestor0 = ∅

• At step i+ 1 compute:

Ancestori+1(x, y) :− Parent(x, y)
Ancestori+1(x, y) :− Ancestori(x, z), Parent(z, y)

• Stop when a fixpoint is reached

Ancestori+1 = Ancestori

11/23



Evaluation of recursive programs

IDB:

Ancestor

John Mary
John Jane
Jane Louis
Mary Linda
Louis Mark
John Linda
John Louis
Jane Mark
John Mark

EDB:

Parent

John Mary
John Jane
Jane Louis
Mary Linda
Louis Mark

Ancestor(x, y) :− Parent(x, y)

Ancestor(x, y) :− Ancestor(x, z), Parent(z, y)

12/23

Recursion in SQL

Suppose we have a table Parent with attributes name, child

WITH RECURSIVE Ancestor (name , descendant ) AS (
SELECT *
FROM Parent
UNION
SELECT A. name , P. c h i l d
FROM Ancestor A, Parent P
WHERE A. descendant = P. name

)
SELECT * FROM Ancestor ;

The definition mimics the structure of the Datalog program

13/23



Nonlinear recursion

The head relation can appear more than once in its body

Ancestor(x, y) :− Parent(x, y)

Ancestor(x, y) :− Ancestor(x, z),Ancestor(z, y)

Intuition
x is an ancestor of y if

x is a parent of y

or

x is an ancestor of an ancestor of y

14/23

Nonlinear recursion in SQL

Not supported

WITH RECURSIVE Ancestor (name , descendant ) AS (
SELECT *
FROM Parent
UNION
SELECT A. name , A2 . desc
FROM Ancestor A1 , Ancestor A2
WHERE A1 . descendant = A2 . name

)
SELECT * FROM Ancestor ;

ERROR: recursive reference to query ”ancestor” must not appear more than once

15/23



Recursive programs with negation

Consider the program P = {R(x) :− S(x),¬R(x)}

IDB:

R

EDB:

S

1
2

Step 0 IDB relation R is empty

Step 1 R = {1, 2}
Step 2 R = ∅
Step 3 R = {1, 2}
Step 4 R = ∅

... No fixpoint!
Iteration never ends

16/23

Stratification

Partition a program P into a sequence of subprograms P1, . . . , Pn
• Each subprogram defines one or more IDB relations

• If a relation S is used positively in the definition of R
then S must be defined earlier or simultaneously with R

• If a relation S is used negatively in the definition of R
then S must be defined strictly before R

Stratum 0 EDB relations

Stratum i IDB relations that depend

positively on relations in any stratum j ≤ i
negatively on relations in any stratum j < i

17/23



Stratification

Stratum graph

nodes IDB predicates

edges P → Q if P depends on Q
label the edge with “–” if Q is a negated subgoal

Stratifiable program: no cycle involving at least one negated edge

R(x) :− S(x),¬R(x)
R

−

18/23

More examples

A B C
−

Stratifiable: A = B < C

A

B C

− −

Stratifiable: C ≤ B < A

A B C

−

Not stratifiable: A ≤ B ≤ C < A

C

A B

− −
−

Not stratifiable: A < B ≤ A

19/23



Stratified example

Which target nodes cannot be reached from any source node?

NoReach(x) :− Target(x),¬Reach(x) (rule1)

Reach(x) :− Source(x) (rule2)

Reach(x) :− Reach(y), Link(y, x) (rule3)

Reach NoReach
−

Stratum 0 Source, Link, Target

Stratum 1 Reach

Stratum 2 NoReach

20/23

Evaluation of stratified programs

P partitioned into a sequence P1, . . . , Pn

Gives us an order in which to apply (each group of) rules

At each iteration k, execute each subprogram in sequence

(1) Apply all the rules in P1
(2) Apply all the rules in P2
...

(n) Apply all the rules in Pn

21/23



Evaluation of stratified programs

Reach(x) :− Source(x) (P1)

Reach(x) :− Reach(y), Link(y, x) (P1)

NoReach(x) :− Target(x),¬Reach(x) (P2)

EDB

Source

1
2

Link

1 2
3 4
2 4

Target

2
3
4

IDB

Reach

1
2
4

NoReach

3

22/23

Further remarks on SQL recursion

• Requires stratified negation

• Only linear recursion

Problems

Arithmetic operations
introduce new values not present in the database

Multiset semantics
rules must be applied several times
cycles in the data must be detected

23/23


