
ILP / 4
Cristina Adriana Alexandru, PhD



Last lecture

• Spring Boot:
• Spring annotations (Lombok, others)

• Dependency injection (DI) and inversion of control (IOC)
• @Configuration and @Bean with DI



This lecture

• Architecture, architectural design, issue of complexity, separation of 
concerns
• Recap from SEPP

• Spring Boot web service architecture

• Testing in Spring Boot
• Unit testing

• Integration testing



Architecture: some definitions

“An architecture is the fundamental organisation of a software system 
embodied in its components, their relationships to each other and to the 
environment, and the principles guiding its design and evolution” (IEEE)

A component is a “named software unit that offers one or more services to 
other software components or to end-users of the software”. In “can be 
anything from a program (large scale) to an object (small scale)”. 
(Sommerville)

A service is a “coherent unit of functionality” (Sommerville)



Architectural design

• Involves creating a description of the architecture showing 
components and their relationships.

• One of the main questions: How should the system be decomposed 
into a set of components?
• Approach: Identifying large-scale components, then analysing and splitting 

them up into smaller components



Complexity, separation of concerns

• Major concern: complexity due to the number of components and 
their relationships, the latter increasing exponentially.
• The more complex a system is, the less maintainable, harder to understand, 

error prone, less secure.

• One solution:
• Separation of concerns: components doing only one thing; grouping 

components with related functionality.



Spring Boot web service architecture 

• Main components:
• REST-Controllers: handle REST interface

• Services: handle business logic

• Repositories: data access and storage, 

typically interacting with a database

• Data:
• @Entity define the properties and relationships 

of the application domain, mapped to persistent

storage (e.g. database tables)

• DTOs: data transfer objects (see more later)

REST-Controller 
(@RestCotroller)

Service (@Service)

Repository (@Repository)

Data (@Entity, others like 
DTOs)



Spring Boot folder structure

• Folder components:
• Configuration: configuration classes (great for 

DI, IOC)
• Controller: REST-controller components
• Data: DTO objects (see more later)
• Entity: entities (see above)
• Repository: repository components
• Service: service components

Read more here: https://malshani-
wijekoon.medium.com/spring-boot-folder-
structure-best-practices-18ef78a81819

https://malshani-wijekoon.medium.com/spring-boot-folder-structure-best-practices-18ef78a81819
https://malshani-wijekoon.medium.com/spring-boot-folder-structure-best-practices-18ef78a81819
https://malshani-wijekoon.medium.com/spring-boot-folder-structure-best-practices-18ef78a81819
https://malshani-wijekoon.medium.com/spring-boot-folder-structure-best-practices-18ef78a81819
https://malshani-wijekoon.medium.com/spring-boot-folder-structure-best-practices-18ef78a81819
https://malshani-wijekoon.medium.com/spring-boot-folder-structure-best-practices-18ef78a81819
https://malshani-wijekoon.medium.com/spring-boot-folder-structure-best-practices-18ef78a81819
https://malshani-wijekoon.medium.com/spring-boot-folder-structure-best-practices-18ef78a81819
https://malshani-wijekoon.medium.com/spring-boot-folder-structure-best-practices-18ef78a81819
https://malshani-wijekoon.medium.com/spring-boot-folder-structure-best-practices-18ef78a81819
https://malshani-wijekoon.medium.com/spring-boot-folder-structure-best-practices-18ef78a81819
https://malshani-wijekoon.medium.com/spring-boot-folder-structure-best-practices-18ef78a81819
https://malshani-wijekoon.medium.com/spring-boot-folder-structure-best-practices-18ef78a81819
https://malshani-wijekoon.medium.com/spring-boot-folder-structure-best-practices-18ef78a81819
https://malshani-wijekoon.medium.com/spring-boot-folder-structure-best-practices-18ef78a81819
https://malshani-wijekoon.medium.com/spring-boot-folder-structure-best-practices-18ef78a81819


DTO (Data Transfer Object)

• DTO is a design pattern created by Martin Fowler 
(https://martinfowler.com/eaaCatalog/dataTransferObject.html)

• Encapsulates relevant data to be transferred between software 
application subsystems or layers; in Spring Boot, often from 
controller-service, or service-repository.

• With DTOs, we can build different views from our domain models 
(entities), optimized to the clients’ needs, without affecting domain 
design

• See example here: https://www.baeldung.com/java-dto-pattern

https://martinfowler.com/eaaCatalog/dataTransferObject.html
https://martinfowler.com/eaaCatalog/dataTransferObject.html
https://martinfowler.com/eaaCatalog/dataTransferObject.html
https://www.baeldung.com/java-dto-pattern
https://www.baeldung.com/java-dto-pattern
https://www.baeldung.com/java-dto-pattern
https://www.baeldung.com/java-dto-pattern
https://www.baeldung.com/java-dto-pattern


DTO (Data Transfer Object)

• DTOs are usually POJOs (plain old Java objects): flat data structures 
without a particular structure, naming conventions, business logic

• They can also be Java beans: all attributes private, getters/setters in 
getX/setX format, default constructor, implementing Serializable

• If Java beans, good to use the MapStruct mapper to convers entities 
to DTOs to vice versa: https://www.baeldung.com/mapstruct

https://www.baeldung.com/mapstruct
https://www.baeldung.com/mapstruct


DTO (Data Transfer Object)

• Advantages of DTOs:
• Reduced network calls, because you can bundle relevant data and reuse DTO

• Enhanced maintainability due to separation of concerns

• DTOs can be versioned independently; backward compatibility

• Reduced data transfer overheads because can transfer only necessary data 



Testing in Spring Boot

• Unit testing: testing a single component
• Testing services in isolation
• Testing controllers in isolation

• Integration testing: testing that components interact properly
• Testing how several components like controllers, services, and repositories work together

• Spring Boot already has all you need (in spring-boot-starter-test dependency):
• JUnit
• Mockito (for mocking)



Unit testing services in Spring Boot

• Does not normally require any special Spring Boot annotations

• Main components of a JUnit 5 test class for a component:
• Test methods:

• Annotated with @Test (or @RepeatedTest(<Number>) to repeat test)
• Other possible annotations: @DisplayName("<Name>"), @Disabled("reason"), 

@Tag("<TagName>")

• Including assert method(s): typically assertThat or assertEquals (see others: 
https://junit.org/junit4/javadoc/4.8/org/junit/Assert.html)

• Optionally, methods to execute before the tests: @BeforeEach, @BeforeAll

• Optionally, methods to execute after the tests: @AfterEach, @AfterAll

https://junit.org/junit4/javadoc/4.8/org/junit/Assert.html
https://junit.org/junit4/javadoc/4.8/org/junit/Assert.html


Unit testing in Spring Boot- Mocking

• Mocking allows replacing a dependency with a deterministic mock so 
that the component can be tested in isolation

• Mockito mocking instructions:
• mock method or @Mock annotation to create a mock object

• If using @Mock, you need to call MockitoAnnotations.openMocks(this) (former 
initMocks(this, now deprecated) in @BeforeEach method.

• when(…).thenReturn(…) or when(…).thenAnswer(…) to set mock object 
behaviour

• @InjectMocks to create mock and inject mocks annotated with @Mock into it
• spy method or @Spy annotation to mock only specific behaviours

See more: 
https://www.digitalocean.com/community/tutorials/mockito-mock-
examples

https://www.digitalocean.com/community/tutorials/mockito-mock-examples
https://www.digitalocean.com/community/tutorials/mockito-mock-examples
https://www.digitalocean.com/community/tutorials/mockito-mock-examples
https://www.digitalocean.com/community/tutorials/mockito-mock-examples
https://www.digitalocean.com/community/tutorials/mockito-mock-examples
https://www.digitalocean.com/community/tutorials/mockito-mock-examples


Integration testing in Spring Boot

• Test and other methods, assert methods, mocking like in unit testing 

• Require an application context

• @SpringBootTest annotation on test class bootstraps an entire 
application context automatically when running tests
• webEnvironment attribute can take MOCK (to work with mock web 

environment, default), RANDOM_PORT, DEFINED_PORT (running server)

• MockMvc/ TestRestTemplate object to send HTTP requests and check 
results in mock environment/ running server
• Require injecting with @Autowired 
• @AutoConfigureMockMvc to automatically configure MockMvc

• @Autowired to inject dependencies if application context can create 
them on its own



Unit testing controllers in Spring Boot

• @WebMvcTest annotation on test class to bootstrap only controllers 
(or specific one provided as argument) in a mock application context

• @MockBean to mock dependencies and inject them in application 
context, replacing any existing bean of the same type.

• @Mock mocks dependencies only! 



Testing in Spring Boot

• Much more here: https://medium.com/@bubu.tripathy/testing-
spring-boot-applications-c5d8212f6e72

https://medium.com/@bubu.tripathy/testing-spring-boot-applications-c5d8212f6e72
https://medium.com/@bubu.tripathy/testing-spring-boot-applications-c5d8212f6e72
https://medium.com/@bubu.tripathy/testing-spring-boot-applications-c5d8212f6e72
https://medium.com/@bubu.tripathy/testing-spring-boot-applications-c5d8212f6e72
https://medium.com/@bubu.tripathy/testing-spring-boot-applications-c5d8212f6e72
https://medium.com/@bubu.tripathy/testing-spring-boot-applications-c5d8212f6e72
https://medium.com/@bubu.tripathy/testing-spring-boot-applications-c5d8212f6e72
https://medium.com/@bubu.tripathy/testing-spring-boot-applications-c5d8212f6e72
https://medium.com/@bubu.tripathy/testing-spring-boot-applications-c5d8212f6e72

	Slide 1: ILP / 4
	Slide 2: Last lecture
	Slide 3: This lecture
	Slide 4: Architecture: some definitions
	Slide 5: Architectural design
	Slide 6: Complexity, separation of concerns
	Slide 8: Spring Boot web service architecture 
	Slide 9: Spring Boot folder structure
	Slide 10: DTO (Data Transfer Object)
	Slide 11: DTO (Data Transfer Object)
	Slide 12: DTO (Data Transfer Object)
	Slide 13: Testing in Spring Boot
	Slide 14: Unit testing services in Spring Boot
	Slide 15: Unit testing in Spring Boot- Mocking
	Slide 16: Integration testing in Spring Boot
	Slide 17: Unit testing controllers in Spring Boot
	Slide 18: Testing in Spring Boot

