ILP / 4

Cristina Adriana Alexandru, PhD

Last lecture

* Spring Boot:
» Spring annotations (Lombok, others)

* Dependency injection (DI) and inversion of control (I0C)
* @Configuration and @Bean with DI

I
.:“).
o\ i z
A N

OrNeY

THE UNIVERSITY qf'EDlNBURG[1
informatics

This lecture

* Architecture, architectural design, issue of complexity, separation of
concerns

e Recap from SEPP
* Spring Boot web service architecture

* Testing in Spring Boot
* Unit testing
* Integration testing

R QNVE/"“‘Q THE UNIVERSITY of EDINBURGH
N pEd : ° °
&3 informatics
OIN®

Architecture: some definitions

“An architecture is the fundamental organisation of a software system
embodied in its components, their relationships to each other and to the
environment, and the principles guiding its design and evolution” (IEEE)

A component is a “named software unit that offers one or more services to
other software components or to end-users of the software”. In “can be
anything from a program (large scale) to an object (small scale)”.
(Sommerville)

A service is a “coherent unit of functionality” (Sommerville)

R QNVE/"“‘Q THE UNIVERSITY of EDINBURGH

N pEd : ° °
&3 informatics
OIN®

Architectural design

* Involves creating a description of the architecture showing
components and their relationships.

* One of the main questions: How should the system be decomposed
into a set of components?

* Approach: Identifying large-scale components, then analysing and splitting
them up into smaller components

R QNVE/"“‘Q THE UNIVERSITY of EDINBURGH

N pEd : ° °
&3 informatics
OIN®

Complexity, separation of concerns

* Major concern: complexity due to the number of components and
their relationships, the latter increasing exponentially.
* The more complex a system is, the less maintainable, harder to understand,
error prone, less secure.
* One solution:

e Separation of concerns: components doing only one thing; grouping
components with related functionality.

R QNVE/"“‘Q THE UNIVERSITY of EDINBURGH

N pEd : ° °
&3 informatics
OIN®

Spring Boot web service architecture
* Main components: REST-Controller
e REST-Controllers: handle REST interface ‘\
* Services: handle business logic
* Repositories: data access and storage, \,
typically interacting with a database \

.) .] . Repository (@Repository)
* @Entity define the properties and relationships \

of the application domain, mapped to persistent
storage (e.g. database tables)
* DTOs: data transfer objects (see more later)

Data (@Entity, others like

DTOs)

P
‘°z THE UNIVERSITY of EDIN

| informatics

Spring Boot folder structure

* Folder components:

e Configuration: configuration classes (great for
DI, 10C)

Controller: REST-controller components
Data: DTO objects (see more later)
Entity: entities (see above)

* Repository: repository components

* Service: service components

v [src
v [3J main

v IEVE

(] ilpSimpleProject

(] configuration
(] controller

() data

(2] entity

(5] repository

(] service

SN LS Read more here: https://malshani-
wijekoon.medium.com/spring-boot-folder-
structure-best-practices-18ef78a81819

\w "?”“f: THE UNIVERSITY of EDINBURGH
1 Toe .
- informatics

OrNeY

https://malshani-wijekoon.medium.com/spring-boot-folder-structure-best-practices-18ef78a81819
https://malshani-wijekoon.medium.com/spring-boot-folder-structure-best-practices-18ef78a81819
https://malshani-wijekoon.medium.com/spring-boot-folder-structure-best-practices-18ef78a81819
https://malshani-wijekoon.medium.com/spring-boot-folder-structure-best-practices-18ef78a81819
https://malshani-wijekoon.medium.com/spring-boot-folder-structure-best-practices-18ef78a81819
https://malshani-wijekoon.medium.com/spring-boot-folder-structure-best-practices-18ef78a81819
https://malshani-wijekoon.medium.com/spring-boot-folder-structure-best-practices-18ef78a81819
https://malshani-wijekoon.medium.com/spring-boot-folder-structure-best-practices-18ef78a81819
https://malshani-wijekoon.medium.com/spring-boot-folder-structure-best-practices-18ef78a81819
https://malshani-wijekoon.medium.com/spring-boot-folder-structure-best-practices-18ef78a81819
https://malshani-wijekoon.medium.com/spring-boot-folder-structure-best-practices-18ef78a81819
https://malshani-wijekoon.medium.com/spring-boot-folder-structure-best-practices-18ef78a81819
https://malshani-wijekoon.medium.com/spring-boot-folder-structure-best-practices-18ef78a81819
https://malshani-wijekoon.medium.com/spring-boot-folder-structure-best-practices-18ef78a81819
https://malshani-wijekoon.medium.com/spring-boot-folder-structure-best-practices-18ef78a81819
https://malshani-wijekoon.medium.com/spring-boot-folder-structure-best-practices-18ef78a81819

DTO (Data Transfer Object)

 DTO is a design pattern created by Martin Fowler
(https://martinfowler.com/eaaCatalog/dataTransferObject.html)

* Encapsulates relevant data to be transferred between software
application subsystems or layers; in Spring Boot, often from
controller-service, or service-repository.

 With DTOs, we can build different views from our domain models
(entities), optimized to the clients’ needs, without affecting domain
design

* See example here: https://www.baeldung.com/java-dto-pattern

SRV,
rf‘:‘ N \. THE UNIVERSITY of EDINBURG
B 4*3 g

Rn e

https://martinfowler.com/eaaCatalog/dataTransferObject.html
https://martinfowler.com/eaaCatalog/dataTransferObject.html
https://martinfowler.com/eaaCatalog/dataTransferObject.html
https://www.baeldung.com/java-dto-pattern
https://www.baeldung.com/java-dto-pattern
https://www.baeldung.com/java-dto-pattern
https://www.baeldung.com/java-dto-pattern
https://www.baeldung.com/java-dto-pattern

DTO (Data Transfer Object)

e DTOs are usually POJOs (plain old Java objects): flat data structures
without a particular structure, naming conventions, business logic

* They can also be Java beans: all attributes private, getters/setters in
getX/setX format, default constructor, implementing Serializable

* If Java beans, good to use the MapStruct mapper to convers entities
to DTOs to vice versa: https://www.baeldung.com/mapstruct

EEEEEEEEEEEEEEEEEEEEEEE

<‘\sv\llvp_ 4,
x “
s 71 %
Uy -
A | A |
A;,:l
Orne™

https://www.baeldung.com/mapstruct
https://www.baeldung.com/mapstruct

DTO (Data Transfer Object)

* Advantages of DTOs:
* Reduced network calls, because you can bundle relevant data and reuse DTO
* Enhanced maintainability due to separation of concerns
* DTOs can be versioned independently; backward compatibility
* Reduced data transfer overheads because can transfer only necessary data

R QNVE/"“‘Q THE UNIVERSITY of EDINBURGH

N pEd : ° °
&3 informatics
OIN®

Testing in Spring Boot

* Unit testing: testing a single component
* Testing services in isolation
* Testing controllers in isolation

* Integration testing: testing that components interact properly
* Testing how several components like controllers, services, and repositories work together

* Spring Boot already has all you need (in spring-boot-starter-test dependency):
* JUnit
* Mockito (for mocking)

P
AR \-. THE UNIVERSITY quDlNBURG[1

&Y informatics

Unit testing services in Spring Boot

* Does not normally require any special Spring Boot annotations

* Main components of a JUnit 5 test class for a component:

* Test methods:

* Annotated with @Test (or @RepeatedTest(<Number>) to repeat test)

e Other possible annotations: @DisplayName("<Name>"), @Disabled("reason"),
@Tag("<TagName>")

* Including assert method(s): typically assertThat or assertEquals (see others:
https://junit.org/junit4/javadoc/4.8/org/junit/Assert.html)

* Optionally, methods to execute before the tests: @BeforeEach, @BeforeAll
* Optionally, methods to execute after the tests: @AfterEach, @AfterAll

SRLVE,
SN, THE UNIVERSITY of EDINBURGH

&y informatics

https://junit.org/junit4/javadoc/4.8/org/junit/Assert.html
https://junit.org/junit4/javadoc/4.8/org/junit/Assert.html

Unit testing in Spring Boot- Mocking

* Mocking allows replacing a dependency with a deterministic mock so
that the component can be tested in isolation

* Mockito mocking instructions:

* mock method or @Mock annotation to create a mock object

* If using @Mock, you need to call MockitoAnnotations.openMocks(this) (former
initMocks(this, now deprecated) in @BeforeEach method.

* when(...).thenReturn(...) or when(...).thenAnswer(...) to set mock object
behaviour

 @InjectMocks to create mock and inject mocks annotated with @Mock into it
* spy method or @Spy annotation to mock only specific behaviours

See more:
https://www.digitalocean.com/community/tutorials/mockito-mock-
examples

informatics

https://www.digitalocean.com/community/tutorials/mockito-mock-examples
https://www.digitalocean.com/community/tutorials/mockito-mock-examples
https://www.digitalocean.com/community/tutorials/mockito-mock-examples
https://www.digitalocean.com/community/tutorials/mockito-mock-examples
https://www.digitalocean.com/community/tutorials/mockito-mock-examples
https://www.digitalocean.com/community/tutorials/mockito-mock-examples

Integration testing in Spring Boot

* Test and other methods, assert methods, mocking like in unit testing

* Require an application context

* @SpringBootTest annotation on test class bootstraps an entire
application context automatically when running tests

* webEnvironment attribute can take MOCK (to work with mock web
environment, default), RANDOM PORT, DEFINED_PORT (running server)

* MockMvc/ TestRestTemplate object to send HTTP requests and check
results in mock environment/ running server
* Require injecting with @Autowired
 @AutoConfigureMockMvc to automatically configure MockMvc
 @Autowired to inject dependencies if application context can create

e them on its own
informatics

Unit testing controllers in Spring Boot

« @WebMvcTest annotation on test class to bootstrap only controllers
(or specific one provided as argument) in a mock application context

« @MockBean to mock dependencies and inject them in application
context, replacing any existing bean of the same type.

* @Mock mocks dependencies only!

R QNVE/"“‘Q THE UNIVERSITY of EDINBURGH

N pEd : ° °
&3 informatics
OIN®

Testing in Spring Boot

* Much more here: https://medium.com/@bubu.tripathy/testing-
spring-boot-applications-c5d8212f6e72

0000000
EEEEEEEEEEEEEEEEEEEEEEEE

https://medium.com/@bubu.tripathy/testing-spring-boot-applications-c5d8212f6e72
https://medium.com/@bubu.tripathy/testing-spring-boot-applications-c5d8212f6e72
https://medium.com/@bubu.tripathy/testing-spring-boot-applications-c5d8212f6e72
https://medium.com/@bubu.tripathy/testing-spring-boot-applications-c5d8212f6e72
https://medium.com/@bubu.tripathy/testing-spring-boot-applications-c5d8212f6e72
https://medium.com/@bubu.tripathy/testing-spring-boot-applications-c5d8212f6e72
https://medium.com/@bubu.tripathy/testing-spring-boot-applications-c5d8212f6e72
https://medium.com/@bubu.tripathy/testing-spring-boot-applications-c5d8212f6e72
https://medium.com/@bubu.tripathy/testing-spring-boot-applications-c5d8212f6e72

	Slide 1: ILP / 4
	Slide 2: Last lecture
	Slide 3: This lecture
	Slide 4: Architecture: some definitions
	Slide 5: Architectural design
	Slide 6: Complexity, separation of concerns
	Slide 8: Spring Boot web service architecture
	Slide 9: Spring Boot folder structure
	Slide 10: DTO (Data Transfer Object)
	Slide 11: DTO (Data Transfer Object)
	Slide 12: DTO (Data Transfer Object)
	Slide 13: Testing in Spring Boot
	Slide 14: Unit testing services in Spring Boot
	Slide 15: Unit testing in Spring Boot- Mocking
	Slide 16: Integration testing in Spring Boot
	Slide 17: Unit testing controllers in Spring Boot
	Slide 18: Testing in Spring Boot

