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This lecture

e Path finding (i.e. graph search) algorithms
* What path finding means

Representing maps

Breadth first search algorithm

Dijkstra algorithm

A* algorithm
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Pathfinding

* Find a path from one location ([source]) to ([goal])
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Pathfinding is Ubiquitous

 Robotics
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Pathfinding is Ubiquitous
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Pathfinding is Ubiquitous

* Autonomous parking

Parking Slot

Actual Path (Path Following) N
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Pathfinding is Ubiquitous

* Map route search
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Pathfinding is Ubiquitous
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Pathfinding Goal(s)

* Shortest distance
e Least amount of travel time

* Lowest resource consumption

e e.g., fuel, money
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Pathfinding algorithms

e Graph search algorithms

* Map is represented as a
graph

* Input: graph with nodes e
and edges ==
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Pathfinding algorithms

e Graph search algorithms

* Map is represented as a
graph

* Input: graph with nodes e
and edges =
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Pathfinding algorithms

e Graph search algorithms

* Map is represented as a
graph

* Input: graph with nodes e
and edges ==

* Output: nodes and edges
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Alternative to representing the map

 Grid (still with graph correspondent)
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Which representation?

* Graph search algorithm can accept any kind of graph

* |n this lecture we use:

* grid map with tiles as nodes and edges between adjacent nodes
for easy visualisations
* graph (undirected, for simplicity) for complex algorithm details

* Map is static
* no change
e all the obstacles are known
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Algorithms

* Breadth First Search
* Dijkstra’s Algorithm

OA*
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Breadth First Search: goal

* Find the shortest path from a source node to all other reachable
nodes in terms of the number of edges
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Breadth First Search: how it works

» Keep tracking of an expanding ring:
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Breadth First Search: how it works

» Keep tracking of an expanding ring:
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Breadth First Search: how it works

» Keep tracking of an expanding ring:
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Breadth First Search: how it works

» Keep tracking of an expanding ring:
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Breadth First Search: how it works

» Keep tracking of an expanding ring:
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Breadth First Search: how it works

e Keep tracking of an expanding ring:
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Breadth First Search: how it works

e Keep tracking of an expanding ring:
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Breadth First Search: how it works

e Keep tracking of an expanding ring:
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Breadth First Search: how it works
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Breadth First Search: how it works
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Breadth First Search: how it works
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Breadth First Search: how it works
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Breadth First Search: how it works
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Breadth First Search: how it works




Breadth First Search: how it works
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Breadth First Search: pseudocode Q

algorithm BFS is
Input: A graph G and a starting node source of G
Output: parent which traces the shortest path from each node back to source

let Q be a queue //first in first out
label source as explored
Q.enqueue(source)
while Q is not empty do
v := Q.dequeue()
for all edges from vto win G.adjacentEdges(v) do
if wis not labelled as explored then
label w as explored
w.parent :=v
Q.engqueue(w)
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Getting path to goal

algorithm calculatePath is
Input: parent and goal

Output: S as a sequence of nodes between goal and source

let S be a sequence

u :=goal

while parent[u] is defined do
S.push(u)

u := parentfu]
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Breadth First Search: early exit

Without early exit

With early exit
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Breadth First Search: pseudocode Q

algorithm BFS is
Input: A graph G, a starting node source of G and a goal node goal
Output: parent which traces the shortest path from each node back to source

let Q be a queue
label source as explored
Q.engueue(source)
while Q is not empty do
v := Q.dequeue()
if vis goal then
break
for all edges from vto win G.adjacentEdges(v) do
if wis not labelled as explored then
label w as explored
w.parent :=v
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Dijkstra’s algorithm: goal Q

* Find the shortest path from a source node to all other reachable
nodes, while also considering movement cost (difference to BFS)

 Movement cost can be distance, travel time, resource consumption (e.qg. fuel,
money, etc.)

* Dijkstra cannot work with negative movement cost
* It prioritises smaller movement cost
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Dijkstra’s algorithm: goal

Movement costs 1 Movement costs 5 on grass
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Dijkstra’s algorithm: how it works Q

1. Mark the non-visited node with smallest cost (initially source) as
visited

Find all its unvisited neighbors
Calculate the cost of reaching them

Sort based on cost

A

Repeat 1-4 until all nodes visited
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Dijkstra’s algorithm: practicalities Q

 Movement costs can be considered as (positive) weights on weighted
graph
* Min priority queue makes algorithm more efficient
» Stores nodes-cost tuples with their cost priority
* Node-cost tuple with min cost always head of queue
* |n Java, dedicated PriorityQueue type

https://docs.oracle.com/javase/8/docs/api/java/util/PriorityQueue.html
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https://docs.oracle.com/javase/8/docs/api/java/util/PriorityQueue.html

Dijkstra’s algorithm: how it works Q

A B C D E
parent:

Q (min priority queue):
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Dijkstra’s algorithm: how it works Q

A B C D E
parent:

Q (min priority queue):
(A, 0)
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Dijkstra’s algorithm: how it works @

A B C D E
parent:

Q (min priority queue):
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Dijkstra’s algorithm: how it works @

A B C D E
parent: A

Q (min priority queue):

A6}
(B, 6)
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Dijkstra’s algorithm: how it works

A D E

B C
parent: A A

Q (min priority queue):
A6}
(C,3)
(B, 6)
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Dijkstra’s algorithm: how it works

A D E

B C
parent: A A

Q (min priority queue):
A6}

{63}
(B, 6)
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Dijkstra’s algorithm: how it works

A B C D E
parent: C A
Q (min priority queue):
A6}
&34
(B, 4)
(B, 6)
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Dijkstra’s algorithm: how it works

B C
parent: C A

Q (min priority queue):
A6}
&34
(B, 4)
(D, 5)
(B, 6)
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Dijkstra’s algorithm: how it works

SRLVE,
RPN, THE UNIVERSITY of EDINBURGH

& informatics

B C
parent: C A

Q (min priority queue):
A6}
&34
84}
(D, 5)
(B, 6)



Dijkstra’s algorithm: how it works

Only consider unvisited neighbours A B C E
parent: C A B

cost: 4
e Q (min priority queue):
4| cost:8 A©}
&3
@ 8,4)
1 (D, 5)
source (B, 6)

(E, 8)

N O

cost: 5
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Dijkstra’s algorithm: how it works
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Dijkstra’s algorithm: how it works

B C
parent: C A

D has no unvisited neighbours
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Dijkstra’s algorithm: how it works
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B was already visited

ost: 4
4 cost: 8

B C
parent: C A

Q (min priority queue):
A6}
&3}
84}
85

{86}
(E, 8)



Dijkstra’s algorithm: how it works

B C
parent: C A

cost: 4
e Q (min priority queue):
4 : A6}

&3
B4
b5

source (B-6)
E has no unvjsited neighbours (E,-8)
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Dijkstra’s algorithm: how it works

B C
parent: C A

Q (min priority queue):
empty

Shortest paths from source A to each goal:
* toB:A-C-B

* toC:A-C

* toD:A-C-D

* toE:A-C-B-E
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Dijkstra’s algorithm: pseudocode (1)

algorithm Dijkstra is
Input: A graph G, a starting node source of G
Output: parent which traces the shortest path from each node back to source

let Q be a priority queue
cost[source] :=0
Q.add_with_priority(source, 0)

for each node vin Graph.Nodes do
if v # source then
parent[v] := UNDEFINED
cost[v] := INFINITY
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Dijkstra’s algorithm: pseudocode (2)

while Q is not empty do
u := Q.extract_min()
if u is not labelled as explored then //optimization
label u as explored //optimization
for all edges from u to v in G.adjacentEdges(u) do
if v is not labelled as explored then //optimization
new_cost := cost[u] + Graph.Edges(u, v)
if new_cost < cost[v] then
parent[v] :==u
cost[v] := new_cost
Q. add_with_priority (v, new_cost)

SRLVE,
SN, THE UNIVERSITY of EDINBURGH

&Y informatics



Dijkstra’s algorithm: early exit, path to goal@

* Like BFS, Dijkstra calculates shortest path from source to all nodes,
using up entire map
* To more efficiently calculate path to a goal, can apply early exit like in BFS

e Can use same additional algorithm presented for BFS to get path to
goal
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Dijkstra vs BFS

Breadth First Search

*-

Dijkstra’s Algorithm
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Dijkstra vs BFS

Breadth First Search
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Dijkstra vs BFS

Breadth First Search - Dijkstra’s Algorithm

' t ~ B < SSSSSSSSS
HBRCOCSSEL - AT
S AN\ N\ Es T | il e ;;
P e

EANNR

igﬁiﬁﬂ‘% %

R .

_+_
- .
. &
+
—,f-
+
_+_
+
+
+
+
+
_.!_

A S AN
F 444+

'+++++
L IS

aé"wvs# VERSITY of ED!
% informatics



Dijkstra vs BFS

Breadth First Search
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Dijkstra vs BFS
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Dijkstra vs BFS

* Dijkstra
* Excellent: finding the shortest path given varying cost

* BFS

* Better: finding the shortest path given equal cost (faster)
e Bad: finding the shortest path when varying cost (does not consider cost)

* Both

* Good: [source] to all other locations
* Bad: [source] to [goal], even with early exit

ity
A @) THE UNIVERSITY of EDINBURGH

43 informatic



Heuristic Search

* Expand towards the goal
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Heuristics for Grid Maps

* How close to the goal 0 | 1 ] 2] 31 4
0
e Manhattan distance T S
1 |
e Euler Distance
2 &
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Heuristics for Grid Maps

* How close to the goal e T 1 72 [ 3T24
* Estimation 0
’ There may be ObStaCIeS . 1 E . Manhgttan Distflance
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A* algorithm: goal

* Find the shortest path from a source node to goal node, while also
considering movement cost
* Unlike BFS and Dijkstra, focusing on path to goal
* Unlike BFS, considering movement cost

* It prioritises smaller movement cost (like Dijkstra) but also using
heuristics to guide search

=> better performance if heuristic chosen well
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A* algorithm: main concepts

* Very similar to Dijkstra, but:

* F =G + H used to prioritise which neighbour to choose next
* G = exact cost (like in Dijkstra) from the source to a node
* H = heuristic estimated cost (must be implemented separately) from a node to the goal

* Prioritising lowest F when choosing next node to explore

* Dijkstra is special case of A* where heuristic returns O for all nodes
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A* algorithm: pseudocode

algorithm A-Star is

Input: A graph G, a starting node source of G, an ending node goal of G

Output: parent which traces the shortest path from goal to source

let Q be a priority queue

cost[source] :=0 //gscore

fscore[source] := heuristic(source)

Q.add_with_priority(source, 0)

for each node v in Graph.Nodes do

if v # source then

parent[v] := UNDEFINED
cost[v] := INFINITY
fscore[v] := INFINITY
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A* algorithm: pseudocode (2)

while Q is not empty do

u := Q.extract_min() // will extract tuple with min fscore

if u is goal then

return calculatePath(parent, goal) //same shown earlier

if u is not labelled as explored then //optimization

SRLVE,
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informatictreturn failure

label u as explored //optimization
for all edges from u to vin G.adjacentEdges(u) do
if vis not labelled as explored then //optimization
new_cost := cost[u] + Graph.Edges(u, v)
if new_cost < cost[v] then
parent[v] :=u
cost[v] := new_cost
fscore[v] := new_cost + heuristic(v)
Q. add_with_priority (v, fscore/v])
//Q empty but goal not reached



GRLVE,
S

Y T

5 < e

o A l

A 3

O

A* vs Dijkstra

HE UNIVERSITY of EDINBURGH

nformatic

Dijkstra’s Algorithm

F ] 4] 58] 58] ] ] pmtemtitasia
] ] e o 0 | | ] 5 ) [
0 ) w4 8 8|

1] ) ) e | | o ] O 2
e min 2 s u}e e
[ [ ] e | S 81
1 =/
EEEE
HEE ...
0 = I
FJJIIIIIIII

A* Search




A* vs Dijkstra

° A*
* Excellent: Guarantees shortest path [source] to [goal] (when varying or fixed
cost) when heuristic does not overestimate cost
* Good: More efficient than Dijkstra if heuristic chosen well
e Good: Complexity typically better than Dijkstra
e Bad: performance and efficiency depends on quality of heuristic

* Dijkstra:
* Excellent: Guarantees shortest path for all nodes when varying cost
* Bad: Can be slow and less efficient for large graphs
* Bad: [source] to [goal], even with early exit
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Conclusion

* Breadth First Search: explores equally in all directions

* Dijkstra’s Algorithm: prioritizes paths with lowest cost to
explore

£ &

e A*: prioritizes paths that are lower cost as well as seem to
be leading closer to a goal
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