
ILP / 6
Cristina Adriana Alexandru, PhD

Slides adapted from: Changjian Li



This lecture

• Path finding (i.e. graph search) algorithms
• What path finding means

• Representing maps

• Breadth first search algorithm

• Dijkstra algorithm

• A* algorithm



Pathfinding

• Find a path from one location ([source]) to ([goal])



• Robotics

Pathfinding is Ubiquitous 



Pathfinding is Ubiquitous 

• Warehouse



Pathfinding is Ubiquitous 

• Autonomous parking



Pathfinding is Ubiquitous 

• Map route search



Pathfinding is Ubiquitous 

• Games



Pathfinding Goal(s)

• Shortest distance

• Least amount of travel time

• Lowest resource consumption

• e.g., fuel, money



Pathfinding algorithms

• Graph search algorithms

• Map is represented as a 
graph

• Input: graph with nodes  
and edges 



Pathfinding algorithms

• Graph search algorithms

• Map is represented as a 
graph

• Input: graph with nodes  
and edges 



Pathfinding algorithms

• Graph search algorithms

• Map is represented as a 
graph

• Input: graph with nodes  
and edges 

• Output: nodes and edges



Alternative to representing the map

• Grid (still with graph correspondent)



Which representation?

• Graph search algorithm can accept any kind of graph

• In this lecture we use:
•  grid map with tiles as nodes and edges between adjacent nodes

for easy visualisations

• graph (undirected, for simplicity) for complex algorithm details

• Map is static
• no change

• all the obstacles are known



Algorithms

• Breadth First Search

• Dijkstra’s Algorithm

• A*

Changjian Li15/64



Breadth First Search: goal

• Find the shortest path from a source node to all other reachable 
nodes in terms of the number of edges



Breadth First Search: how it works

• Keep tracking of an expanding ring:



Breadth First Search: how it works

• Keep tracking of an expanding ring:



Breadth First Search: how it works

• Keep tracking of an expanding ring:



Breadth First Search: how it works

• Keep tracking of an expanding ring:



Breadth First Search: how it works

• Keep tracking of an expanding ring:



Breadth First Search: how it works

• Keep tracking of an expanding ring:



Breadth First Search: how it works

• Keep tracking of an expanding ring:



Breadth First Search: how it works

• Keep tracking of an expanding ring:



Breadth First Search: how it works

ILP 24-25 [SEM1]



Breadth First Search: how it works

ILP 24-25 [SEM1]



Breadth First Search: how it works

ILP 24-25 [SEM1]



Breadth First Search: how it works

ILP 24-25 [SEM1]



Breadth First Search: how it works

ILP 24-25 [SEM1]



Breadth First Search: how it works



Breadth First Search: how it works



Breadth First Search: pseudocode
algorithm BFS is

 Input: A graph G and a starting node source of G

     Output: parent which traces the shortest path from each node back to source

 let Q be a queue //first in first out 

 label source as explored

      Q.enqueue(source)

      while Q is not empty do

           v := Q.dequeue()

           for all edges from v to w in G.adjacentEdges(v) do

                if w is not labelled as explored then

                    label w as explored

                    w.parent := v

                    Q.enqueue(w)



Getting path to goal

algorithm calculatePath is

 Input: parent and goal

 Output: S as a sequence of nodes between goal and source

 

 let S be a sequence

 u := goal

  while parent[u] is defined do

  S.push(u)

  u := parent[u]



Breadth First Search: early exit



Breadth First Search: pseudocode
algorithm BFS is

 Input: A graph G, a starting node source of G and a goal node goal

     Output: parent which traces the shortest path from each node back to source

 let Q be a queue 

 label source as explored

      Q.enqueue(source)

      while Q is not empty do

           v := Q.dequeue()

 if v is goal then

break

           for all edges from v to w in G.adjacentEdges(v) do

                if w is not labelled as explored then

                    label w as explored

                    w.parent := v

                    Q.enqueue(w)



Dijkstra’s algorithm: goal 

• Find the shortest path from a source node to all other reachable 
nodes, while also considering movement cost (difference to BFS)
• Movement cost can be distance, travel time, resource consumption (e.g. fuel, 

money, etc.)

• Dijkstra cannot work with negative movement cost

• It prioritises smaller movement cost



Dijkstra’s algorithm: goal 



Dijkstra’s algorithm: how it works

1. Mark the non-visited node with smallest cost (initially source) as 
visited 

2. Find all its unvisited neighbors

3. Calculate the cost of reaching them

4. Sort based on cost

5. Repeat 1-4 until all nodes visited



Dijkstra’s algorithm: practicalities

• Movement costs can be considered as (positive) weights on weighted 
graph

• Min priority queue makes algorithm more efficient

• Stores nodes-cost tuples with their cost priority

• Node-cost tuple with min cost always head of queue

• In Java, dedicated PriorityQueue type

https://docs.oracle.com/javase/8/docs/api/java/util/PriorityQueue.html

 

https://docs.oracle.com/javase/8/docs/api/java/util/PriorityQueue.html


Dijkstra’s algorithm: how it works
A    B    C    D    E

parent:

Q (min priority queue):

cost: 

cost: 

cost: 

cost: 

cost: 

source



Dijkstra’s algorithm: how it works
A    B    C    D    E

parent:

Q (min priority queue):
(A, 0)cost: 0 

cost: ∞

cost: ∞ 
cost: ∞ 

cost: ∞ 

source



Dijkstra’s algorithm: how it works
A    B    C    D    E

parent:

Q (min priority queue):
(A, 0)cost: 0 

cost: ∞ 

cost: ∞ 
cost: ∞ 

cost: ∞ 

source



Dijkstra’s algorithm: how it works
A    B    C    D    E

parent:         A

Q (min priority queue):
(A, 0)
(B, 6)

cost: 0

cost: 6 

cost: ∞ 
cost: ∞ 

cost: ∞ 

source



Dijkstra’s algorithm: how it works
A    B    C    D    E

parent:         A    A

Q (min priority queue):
(A, 0)
(C, 3)
(B, 6)

cost: 0 

cost: 6 

cost: 3 
cost: ∞ 

cost: ∞  

source



Dijkstra’s algorithm: how it works
A    B    C    D    E

parent:         A    A

Q (min priority queue):
(A, 0)
(C, 3)
(B, 6)

cost: 0 

cost: 6 

cost: 3 
cost: ∞ 

cost: ∞ 

source



Dijkstra’s algorithm: how it works
A    B    C    D    E

parent:         C    A

Q (min priority queue):
(A, 0)
(C, 3)
(B, 4)
(B, 6)

cost: 0 

cost: 4 

cost: ∞

cost: ∞ 

cost: 3 

source



Dijkstra’s algorithm: how it works
A    B    C    D    E

parent:         C    A    C

Q (min priority queue):
(A, 0)
(C, 3)
(B, 4)
(D, 5)
(B, 6)

cost: 0

cost: 4 

cost: 5

cost: ∞ 

cost: 3 

source



Dijkstra’s algorithm: how it works
A    B    C    D    E

parent:         C    A    C

Q (min priority queue):
(A, 0)
(C, 3)
(B, 4)
(D, 5)
(B, 6)

cost: 0 

cost: 4 

cost: 5

cost: ∞

cost: 3 

source



Dijkstra’s algorithm: how it works
A    B    C    D    E

parent:         C    A    C   B

Q (min priority queue):
(A, 0)
(C, 3)
(B, 4)
(D, 5)
(B, 6)
(E, 8)

cost: 0 

cost: 4

cost: 5 

cost: 8

cost: 3 

Only consider unvisited neighbours

source



Dijkstra’s algorithm: how it works
A    B    C    D    E

parent:         C    A    C    B

Q (min priority queue):
(A, 0)
(C, 3)
(B, 4)
(D, 5)
(B, 6)
(E, 8)

cost: 0 

cost: 4

cost: 5 

cost: 8

cost: 3 

source



Dijkstra’s algorithm: how it works
A    B    C    D    E

parent:         C    A    C   B

Q (min priority queue):
(A, 0)
(C, 3)
(B, 4)
(D, 5)
(B, 6)
(E, 8)

cost: 0 

cost: 4 

cost: 5 

cost: 8 

cost: 3 
D has no unvisited neighbours

source



Dijkstra’s algorithm: how it works
A    B    C    D    E

parent:         C    A    C   B

Q (min priority queue):
(A, 0)
(C, 3)
(B, 4)
(D, 5)
(B, 6)
(E, 8)

cost: 4 

cost: 4

cost: 5

cost: 8

cost: 3 

B was already visited

source



Dijkstra’s algorithm: how it works
A    B    C    D    E

parent:         C    A    C   B

Q (min priority queue):
(A, 0)
(C, 3)
(B, 4)
(D, 5)
(B, 6)
(E, 8)

cost: 0 

cost: 4 

cost: 5

cost: 8

cost: 3 

E has no unvisited neighbours
source



Dijkstra’s algorithm: how it works
A    B    C    D    E

parent:         C    A    C   B

Q (min priority queue):
empty

Shortest paths from source A to each goal: 
• to B: A- C- B
• to C: A- C
• to D: A- C- D 
• to E: A- C- B- E

cost: 

cost: 

cost: 

cost: 

cost: 3 

source



Dijkstra’s algorithm: pseudocode (1)

algorithm Dijkstra is

 Input: A graph G, a starting node source of G

     Output: parent which traces the shortest path from each node back to source

 let Q be a priority queue 

 cost[source] := 0

 Q.add_with_priority(source, 0)

       for each node v in Graph.Nodes do

            if v ≠ source then

                 parent[v] := UNDEFINED               

                cost[v] := INFINITY



Dijkstra’s algorithm: pseudocode (2)

while Q is not empty do

  u := Q.extract_min()

  if u is not labelled as explored then   //optimization

   label u as explored   //optimization

    for all edges from u to v in G.adjacentEdges(u) do

    if v is not labelled as explored then  //optimization

      new_cost := cost[u] + Graph.Edges(u, v)

     if new_cost < cost[v] then

      parent[v] := u

      cost[v] := new_cost

       Q. add_with_priority (v, new_cost)



Dijkstra’s algorithm: early exit, path to goal 

• Like BFS, Dijkstra calculates shortest path from source to all nodes, 
using up entire map
• To more efficiently calculate path to a goal, can apply early exit like in BFS

• Can use same additional algorithm presented for BFS to get path to 
goal



Dijkstra vs BFS



Dijkstra vs BFS



Dijkstra vs BFS



Dijkstra vs BFS



Dijkstra vs BFS



Dijkstra vs BFS



Dijkstra vs BFS

• Dijkstra 
• Excellent: finding the shortest path given varying cost

• BFS
• Better: finding the shortest path given equal cost (faster)
• Bad: finding the shortest path when varying cost (does not consider cost)

• Both
• Good: [source] to all other locations
• Bad: [source] to [goal], even with early exit



Heuristic Search

• Expand towards the goal



Heuristics for Grid Maps

• How close to the goal

• Manhattan distance

• Euler Distance

• …



Heuristics for Grid Maps

• How close to the goal
• Estimation

• There may be obstacles



A* algorithm: goal

• Find the shortest path from a source node to goal node, while also 
considering movement cost
• Unlike BFS and Dijkstra, focusing on path to goal

• Unlike BFS, considering movement cost 

• It prioritises smaller movement cost (like Dijkstra) but also using 
heuristics to guide search

=> better performance if heuristic chosen well



A* algorithm: main concepts

• Very similar to Dijkstra, but:
• F = G + H used to prioritise which neighbour to choose next

• G = exact cost (like in Dijkstra) from the source to a node

• H = heuristic estimated cost (must be implemented separately) from a node to the goal

• Prioritising lowest F when choosing next node to explore

• Dijkstra is special case of A* where heuristic returns 0 for all nodes 



A* algorithm: pseudocode
algorithm A-Star is

 Input: A graph G, a starting node source of G, an ending node goal of G

 Output: parent which traces the shortest path from goal to source

 let Q be a priority queue 

 cost[source] := 0  //gscore

fscore[source] := heuristic(source)

 Q.add_with_priority(source, 0)

       for each node v in Graph.Nodes do

            if v ≠ source then

                 parent[v] := UNDEFINED               

                cost[v] := INFINITY

  fscore[v] := INFINITY

Differences to Dijkstra are highlighted



A* algorithm: pseudocode (2)
while Q is not empty do

  u := Q.extract_min() // will extract tuple with min fscore

 if u is goal then

return calculatePath(parent, goal) //same shown earlier

  if u is not labelled as explored then  //optimization

   label u as explored   //optimization

    for all edges from u to v in G.adjacentEdges(u) do

    if v is not labelled as explored then  //optimization

      new_cost := cost[u] + Graph.Edges(u, v)

     if new_cost < cost[v] then

      parent[v] := u

      cost[v] := new_cost

     fscore[v] := new_cost + heuristic(v)

      Q. add_with_priority (v, fscore[v])

return failure //Q  empty but goal not reached 

Differences to Dijkstra are highlighted



A* vs Dijkstra



A* vs Dijkstra

• A*
• Excellent: Guarantees shortest path  [source] to [goal] (when varying or fixed 

cost) when heuristic does not overestimate cost
• Good: More efficient than Dijkstra if heuristic chosen well
• Good: Complexity typically better than Dijkstra
• Bad: performance and efficiency depends on quality of heuristic

• Dijkstra:
• Excellent: Guarantees shortest path for all nodes when varying cost
• Bad: Can be slow and less efficient for large graphs
• Bad: [source] to [goal], even with early exit



Conclusion

• Breadth First Search: explores equally in all directions

• Dijkstra’s Algorithm: prioritizes paths with lowest cost to 
explore

• A*: prioritizes paths that are lower cost as well as seem to 
be leading closer to a goal


	Slide 1: ILP / 6
	Slide 2: This lecture
	Slide 3: Pathfinding
	Slide 4: Pathfinding is Ubiquitous 
	Slide 5: Pathfinding is Ubiquitous 
	Slide 6: Pathfinding is Ubiquitous 
	Slide 7: Pathfinding is Ubiquitous 
	Slide 8: Pathfinding is Ubiquitous 
	Slide 9: Pathfinding Goal(s)
	Slide 10: Pathfinding algorithms
	Slide 11: Pathfinding algorithms
	Slide 12: Pathfinding algorithms
	Slide 13: Alternative to representing the map
	Slide 14: Which representation?
	Slide 15: Algorithms
	Slide 16: Breadth First Search: goal
	Slide 17: Breadth First Search: how it works
	Slide 18: Breadth First Search: how it works
	Slide 19: Breadth First Search: how it works
	Slide 20: Breadth First Search: how it works
	Slide 21: Breadth First Search: how it works
	Slide 22: Breadth First Search: how it works
	Slide 23: Breadth First Search: how it works
	Slide 24: Breadth First Search: how it works
	Slide 25: Breadth First Search: how it works
	Slide 26: Breadth First Search: how it works
	Slide 27: Breadth First Search: how it works
	Slide 28: Breadth First Search: how it works
	Slide 29: Breadth First Search: how it works
	Slide 30: Breadth First Search: how it works
	Slide 31: Breadth First Search: how it works
	Slide 32: Breadth First Search: pseudocode
	Slide 33: Getting path to goal
	Slide 34: Breadth First Search: early exit
	Slide 35: Breadth First Search: pseudocode
	Slide 36: Dijkstra’s algorithm: goal 
	Slide 37: Dijkstra’s algorithm: goal 
	Slide 38: Dijkstra’s algorithm: how it works
	Slide 39: Dijkstra’s algorithm: practicalities
	Slide 40: Dijkstra’s algorithm: how it works
	Slide 41: Dijkstra’s algorithm: how it works
	Slide 42: Dijkstra’s algorithm: how it works
	Slide 43: Dijkstra’s algorithm: how it works
	Slide 44: Dijkstra’s algorithm: how it works
	Slide 45: Dijkstra’s algorithm: how it works
	Slide 46: Dijkstra’s algorithm: how it works
	Slide 47: Dijkstra’s algorithm: how it works
	Slide 48: Dijkstra’s algorithm: how it works
	Slide 49: Dijkstra’s algorithm: how it works
	Slide 50: Dijkstra’s algorithm: how it works
	Slide 51: Dijkstra’s algorithm: how it works
	Slide 52: Dijkstra’s algorithm: how it works
	Slide 53: Dijkstra’s algorithm: how it works
	Slide 54: Dijkstra’s algorithm: how it works
	Slide 55: Dijkstra’s algorithm: pseudocode (1)
	Slide 56: Dijkstra’s algorithm: pseudocode (2)
	Slide 57: Dijkstra’s algorithm: early exit, path to goal 
	Slide 58: Dijkstra vs BFS
	Slide 59: Dijkstra vs BFS
	Slide 60: Dijkstra vs BFS
	Slide 61: Dijkstra vs BFS
	Slide 62: Dijkstra vs BFS
	Slide 63: Dijkstra vs BFS
	Slide 64: Dijkstra vs BFS
	Slide 65: Heuristic Search
	Slide 66: Heuristics for Grid Maps
	Slide 67: Heuristics for Grid Maps
	Slide 68: A* algorithm: goal
	Slide 69: A* algorithm: main concepts
	Slide 70: A* algorithm: pseudocode
	Slide 71: A* algorithm: pseudocode (2)
	Slide 72: A* vs Dijkstra
	Slide 73: A* vs Dijkstra
	Slide 74: Conclusion

