ILP /6

Cristina Adriana Alexandru, PhD

Slides adapted from: Changjian Li

This lecture

e Path finding (i.e. graph search) algorithms
* What path finding means

Representing maps

Breadth first search algorithm

Dijkstra algorithm

A* algorithm

& 0“& THE UNIVERSITY of EDINBURGH

A2 - .
%3 informatics
Oine

Pathfinding

* Find a path from one location ([source]) to ([goal])

start &

5\3%": THE UNIVERSITY of EDINBURGH
1 B * L]
- informatics

IN®

Pathfinding is Ubiquitous

 Robotics

g T

5

obstacles

g
_ B

'r obstacles

i;z-“‘ - \"_‘.‘_{ THE UNIVERSITYngDINPURGH

- Eid B

e informatics
IN®

Pathfinding is Ubiquitous

 \Warehouse

THE UNIVERSITY of EDINBURGH

&) informatics

Pathfinding is Ubiquitous

* Autonomous parking

Parking Slot

Actual Path (Path Following) N

ity
A @) THE UNIVERSITY of EDINBURGH

43 informatics

Pathfinding is Ubiquitous

* Map route search

b JBJIJI[[[l!lhE—g. "U|

e N\

1—N Str\eet Mot M Streat Morthiwve

20th St W

20th St MW — =20th Strest Nm

ot Northwest

L)
20t Stre

ﬁ

1]
»
1

THE UNIVERSITY of EDINBURGH

informatics

A s

10.3 miles

17%h St

THE CA‘STNO lf

-
TWIN PEAKS
\ -~

NOE VALLEY

R SUNSET-DISTAICT ll FOAEST HILL

Vista Del
Tarawal St © 8 S Mante
‘ Bannoin®

I Gl eaAk

Pathfinding is Ubiquitous

ngs%i IHE UNIVERSlTYngDINPURGH
A&y informatics
IN®

Pathfinding Goal(s)

* Shortest distance
e Least amount of travel time

* Lowest resource consumption

e e.g., fuel, money

_5‘0 5 B THE UNIVERSITY of EDINBURGH

~ - ™ .

- informatics
OTN®

Pathfinding algorithms

e Graph search algorithms

* Map is represented as a
graph

* Input: graph with nodes e
and edges ==

VERSITY of ED

mformahcs

Pathfinding algorithms

e Graph search algorithms

* Map is represented as a
graph

* Input: graph with nodes e
and edges =

3
‘P’,\ THE UNIVERSITY of EDINBURGH

& informatics

Pathfinding algorithms

e Graph search algorithms

* Map is represented as a
graph

* Input: graph with nodes e
and edges ==

* Output: nodes and edges

VERSITY of ED

mformahcs

S

Alternative to representing the map

 Grid (still with graph correspondent)

ERSITY of EDINBURGH

informatics

SRVE,
a@ THE UNIV
A e
[} T
“ S

et

Which representation?

* Graph search algorithm can accept any kind of graph

* |n this lecture we use:

* grid map with tiles as nodes and edges between adjacent nodes
for easy visualisations
* graph (undirected, for simplicity) for complex algorithm details

* Map is static
* no change
e all the obstacles are known

R QNVE/"“‘Q THE UNIVERSITY of EDINBURGH

N pEd : ° °
&3 informatics
OIN®

Algorithms

* Breadth First Search
* Dijkstra’s Algorithm

OA*

SRLVE,
RPN, THE UNIVERSITY of EDINBURGH

y: informatics 15/64 Changjian Li

Breadth First Search: goal

* Find the shortest path from a source node to all other reachable
nodes in terms of the number of edges

R ONVEI"“‘Q THE UNIVERSITY of EDINBURGH

N pEd : ° °
&3 informatics
OIN®

Breadth First Search: how it works

» Keep tracking of an expanding ring:

i;z-“‘ - \"_‘.‘_.’ THE UNIVERSITYg’EDINPURGH
Eid B

- informatics
IN®

Breadth First Search: how it works

» Keep tracking of an expanding ring:

a

i;z-“‘ - \"_‘.‘_.’ THE UNIVERSITYg’EDINPURGH
Eid B

- informatics
IN®

Breadth First Search: how it works

» Keep tracking of an expanding ring:

i;z-“‘ - \"_‘.‘_.’ THE UNIVERSITYg’EDINPURGH
Eid B

- informatics
IN®

Breadth First Search: how it works

» Keep tracking of an expanding ring:

'

=4 T E%cl THE UNIVERSITYg’EDINPURGH
‘7: | B [

- informatics
IN®

Breadth First Search: how it works

» Keep tracking of an expanding ring:

e

=4 T E%cl THE UNIVERSITYg’EDINPURGH
‘7: | B [

- informatics
IN®

Breadth First Search: how it works

e Keep tracking of an expanding ring:

f“'“ﬂw%‘“cl IHE UNIVERSlTYg‘"EDINPURGH
A&y informatics
IN®

Breadth First Search: how it works

e Keep tracking of an expanding ring:

ngs%i IHE UNIVERSlTYngDINPURGH
A&y informatics
IN®

Breadth First Search: how it works

e Keep tracking of an expanding ring:
EEEEEEEEEEEEEEEEE
= AN ENE

f“'wws#"a IHE UNIVERSITYQ)‘"EDINPURGH
A&y informatics
IN®

Breadth First Search: how it works

B
*

SNLVE,
AU THE UNIVERSITY of EDINBURGH

- infotmatics
OTNES

Breadth First Search: how it works

SNLVE,
AU THE UNIVERSITY of EDINBURGH
- informaties
ARV in]
OTNES

Breadth First Search: how it works

SNLVE,
SAQUPN: THE UNIVERSITY of EDINBURGH
- informatics
ARV ln]
OTNES

Breadth First Search: how it works

SNLVE,
AU THE UNIVERSITY of EDINBURGH
- informaties
ARV in]
OTNES

Breadth First Search: how it works

sae,
;Z"a 7 |6 THE LINIVERSITYngDINBLIRGH
Y- informaties
B ‘-4?.\.- = 1IN]
oS

Breadth First Search: how it works

Breadth First Search: how it works

f“'wws#"a IHE UNIVERSITY of EDINBURGH
A&y informatics
IN®

Breadth First Search: pseudocode Q

algorithm BFS is
Input: A graph G and a starting node source of G
Output: parent which traces the shortest path from each node back to source

let Q be a queue //first in first out
label source as explored
Q.enqueue(source)
while Q is not empty do
v := Q.dequeue()
for all edges from vto win G.adjacentEdges(v) do
if wis not labelled as explored then
label w as explored
w.parent :=v
Q.engqueue(w)

SRLVE,
RPN, THE UNIVERSITY of EDINBURGH

&Y informatics

Getting path to goal

algorithm calculatePath is
Input: parent and goal

Output: S as a sequence of nodes between goal and source

let S be a sequence

u :=goal

while parent[u] is defined do
S.push(u)

u := parentfu]

SRLVE,
SN, THE UNIVERSITY of EDINBURGH

&Y informatics

Breadth First Search: early exit

Without early exit

With early exit

g\,mv%a IHE UNIVERSITY of EDINBURGH
A&y informatics
IN®

Breadth First Search: pseudocode Q

algorithm BFS is
Input: A graph G, a starting node source of G and a goal node goal
Output: parent which traces the shortest path from each node back to source

let Q be a queue
label source as explored
Q.engueue(source)
while Q is not empty do
v := Q.dequeue()
if vis goal then
break
for all edges from vto win G.adjacentEdges(v) do
if wis not labelled as explored then
label w as explored
w.parent :=v

SRLVE,
Vi~ | THE UNIVERSITY of EDINBURGH

&) informatics Q.enqueue(w)

Dijkstra’s algorithm: goal Q

* Find the shortest path from a source node to all other reachable
nodes, while also considering movement cost (difference to BFS)

 Movement cost can be distance, travel time, resource consumption (e.qg. fuel,
money, etc.)

* Dijkstra cannot work with negative movement cost
* It prioritises smaller movement cost

R QNVE/"“‘Q THE UNIVERSITY of EDINBURGH

N pEd : ° °
&3 informatics
OIN®

Dijkstra’s algorithm: goal

Movement costs 1 Movement costs 5 on grass

EESEEEEEEE EEAr.CCTEEE
HEEEEEEEEE EEr_En- - EE
NN | | ENENCE Y | | i

ERRRRNG: caaERRes.

f“'wws#"a IHE UNIVERSITYQ)‘"EDINPURGH
A&y informatics
IN®

Dijkstra’s algorithm: how it works Q

1. Mark the non-visited node with smallest cost (initially source) as
visited

Find all its unvisited neighbors
Calculate the cost of reaching them

Sort based on cost

A

Repeat 1-4 until all nodes visited

R ONVEI"“‘Q THE UNIVERSITY of EDINBURGH

N pEd : ° °

&3 informatics
OIN®

Dijkstra’s algorithm: practicalities Q

 Movement costs can be considered as (positive) weights on weighted
graph
* Min priority queue makes algorithm more efficient
» Stores nodes-cost tuples with their cost priority
* Node-cost tuple with min cost always head of queue
* |n Java, dedicated PriorityQueue type

https://docs.oracle.com/javase/8/docs/api/java/util/PriorityQueue.html

EEEEEEEEEEEEEEEEEEEEEEE

RIVe
»> . 9
B/ '7 i >
o a | A
B) ‘4 A Y Q_o
OTNeY

https://docs.oracle.com/javase/8/docs/api/java/util/PriorityQueue.html

Dijkstra’s algorithm: how it works Q

A B C D E
parent:

Q (min priority queue):

EEEEEEEEEEEEEEEEEEEEEE

QONI\E{“
R FV? e
Edqd B
Uy -
. 4> 3
Sy
OrnNe

Dijkstra’s algorithm: how it works Q

A B C D E
parent:

Q (min priority queue):
(A, 0)

EEEEEEEEEEEEEEEEEEEEEEE

I
Y ‘7 i":
oy -
B 48

OTNBY

Dijkstra’s algorithm: how it works @

A B C D E
parent:

Q (min priority queue):

/ THE UNIVERSITY quDINBURGH
R * L]
»- informatics

B

<‘\smv X

5 F‘" "

) -

. 4,1
601.\4

Dijkstra’s algorithm: how it works @

A B C D E
parent: A

Q (min priority queue):

A6}
(B, 6)

ooooooo
EEEEEEEEEEEEEEEEEEEEEEEE

Dijkstra’s algorithm: how it works

A D E

B C
parent: A A

Q (min priority queue):
A6}
(C,3)
(B, 6)

. SRLVE 4,
S F{?fi .
) m -
Uy -
AR

COTREY

THE UNIVERSITY quDINBURGH
informatics

Dijkstra’s algorithm: how it works

A D E

B C
parent: A A

Q (min priority queue):
A6}

{63}
(B, 6)

ERSITY of EDINBURGH

. informatics

Dijkstra’s algorithm: how it works

A B C D E
parent: C A
Q (min priority queue):
A6}
&34
(B, 4)
(B, 6)

ERSITY of EDINBURGH

. informatics

Dijkstra’s algorithm: how it works

B C
parent: C A

Q (min priority queue):
A6}
&34
(B, 4)
(D, 5)
(B, 6)

ERSITY of EDINBURGH

. informatics

Dijkstra’s algorithm: how it works

SRLVE,
RPN, THE UNIVERSITY of EDINBURGH

& informatics

B C
parent: C A

Q (min priority queue):
A6}
&34
84}
(D, 5)
(B, 6)

Dijkstra’s algorithm: how it works

Only consider unvisited neighbours A B C E
parent: C A B

cost: 4
e Q (min priority queue):
4| cost:8 A©}
&3
@ 8,4)
1 (D, 5)
source (B, 6)

(E, 8)

N O

cost: 5

SRLVE,
SETE. THE UNIVERSITY of EDINBURGH

43 informatics

Dijkstra’s algorithm: how it works

SRLVE,
RPN, THE UNIVERSITY of EDINBURGH

& informatics

B C
parent: C A

A6}

(D, 5)
(B, 6)
(E, 8)

Dijkstra’s algorithm: how it works

B C
parent: C A

D has no unvisited neighbours

SRLVE,
“A@U@): THE UNIVERSITY of EDINBURGH

43 informatics

Dijkstra’s algorithm: how it works

SRLVE,
SETE. THE UNIVERSITY of EDINBURGH

43 informatics

B was already visited

ost: 4
4 cost: 8

B C
parent: C A

Q (min priority queue):
A6}
&3}
84}
85

{86}
(E, 8)

Dijkstra’s algorithm: how it works

B C
parent: C A

cost: 4
e Q (min priority queue):
4 : A6}

&3
B4
b5

source (B-6)
E has no unvjsited neighbours (E,-8)

ity
A @) THE UNIVERSITY of EDINBURGH

43 informatics

Dijkstra’s algorithm: how it works

B C
parent: C A

Q (min priority queue):
empty

Shortest paths from source A to each goal:
* toB:A-C-B

* toC:A-C

* toD:A-C-D

* toE:A-C-B-E

SRLVE,
SETE. THE UNIVERSITY of EDINBURGH

43 informatics

Dijkstra’s algorithm: pseudocode (1)

algorithm Dijkstra is
Input: A graph G, a starting node source of G
Output: parent which traces the shortest path from each node back to source

let Q be a priority queue
cost[source] :=0
Q.add_with_priority(source, 0)

for each node vin Graph.Nodes do
if v # source then
parent[v] := UNDEFINED
cost[v] := INFINITY

SRLVE,
SN, THE UNIVERSITY of EDINBURGH

&Y informatics

Dijkstra’s algorithm: pseudocode (2)

while Q is not empty do
u := Q.extract_min()
if u is not labelled as explored then //optimization
label u as explored //optimization
for all edges from u to v in G.adjacentEdges(u) do
if v is not labelled as explored then //optimization
new_cost := cost[u] + Graph.Edges(u, v)
if new_cost < cost[v] then
parent[v] :==u
cost[v] := new_cost
Q. add_with_priority (v, new_cost)

SRLVE,
SN, THE UNIVERSITY of EDINBURGH

&Y informatics

Dijkstra’s algorithm: early exit, path to goal@

* Like BFS, Dijkstra calculates shortest path from source to all nodes,
using up entire map
* To more efficiently calculate path to a goal, can apply early exit like in BFS

e Can use same additional algorithm presented for BFS to get path to
goal

R ONVEI"“‘Q THE UNIVERSITY of EDINBURGH

N pEd : ° °
&3 informatics
OIN®

Dijkstra vs BFS

Breadth First Search

*-

Dijkstra’s Algorithm

—— e ———

VERSITY of ED

informaiics

Dijkstra vs BFS

Breadth First Search

5

B S
L ASLIANNN
SRS NN ENSEN
SR A
2 /AN
10 /AN

EANNANT

WRIVE,
o J'i IHE UNIVERSITY of EDINBURGH
A&y informatic

IN®

V)
L
af
V)]
>
(O
S
4+
V)]
k
a

Dijkstra’s Algorithm

a2
&
a
v
v
4
£
i
=
4
o
a
w
@

SSHHHR
44 4
fob Lt

o s s o o BT

NN

RSITY of
informatics

SRIVE,
f@ THE UNIVE] Y of EDINBURGH
=
. K L]
=) 'z
“ &
Rnasal

Dijkstra vs BFS

Breadth First Search - Dijkstra’s Algorithm

' t ~ B < SSSSSSSSS
HBRCOCSSEL - AT
S AN\ N\ Es T | il e ;;
P e

EANNR

igﬁiﬁﬂ‘% %

R .

+
- .
. &
+
—,f-
+
+
+
+
+
+
+
.!

A S AN
F 444+

'+++++
L IS

aé"wvs# VERSITY of ED!
% informatics

Dijkstra vs BFS

Breadth First Search

++-bhhshb s, .
4+ttt
+Ftttt s T
B T T
B R T TR B

A

S R IR R
++++++++++
+ 4+ FH S

JIIINN | ===
W HFZINERIN =
7NNN

WRIVE,
o ‘”cl IHE UNIVERSITY of EDINBURGH
A&y informatic

IN®

oy
Q%

Dijkstra vs BFS

NN

VERSITY of ED

mformatics

NN
s

Breadth First Search

s e e
e e S
IR I e
AN TR
BEBOOO

@‘H%%%%@-

>

R

B B0 i (0% O BN

LS

“i+++++

AR ,3$;$¢++

% v-++§”,___-:3 '+#d_?+

+ -
+44-,

Dijkstra vs BFS

* Dijkstra
* Excellent: finding the shortest path given varying cost

* BFS

* Better: finding the shortest path given equal cost (faster)
e Bad: finding the shortest path when varying cost (does not consider cost)

* Both

* Good: [source] to all other locations
* Bad: [source] to [goal], even with early exit

ity
A @) THE UNIVERSITY of EDINBURGH

43 informatic

Heuristic Search

* Expand towards the goal

iIINEEEEEE
iHINEEEEEE
IHNEEEEEEE
iIHxENEENE
iIHINgEEEEE

RSITY of
informatics

SRIVE,
f@ THE UNIVE] Y of EDINBURGH
=
. K L]
=) 'z
“ &
Rnasal

Heuristics for Grid Maps

* How close to the goal 0 | 1] 2] 31 4
0
e Manhattan distance T S
1 |
e Euler Distance
2 &
(/(G
) 3 Q%O@
4
5

3
2
\~. THE UNIVERSITY of EDINBURGH

¥ informatics

Heuristics for Grid Maps

* How close to the goal e T 1 72 [3T24
* Estimation 0
’ There may be ObStaCIeS . 1 E . Manhgttan Distflance

&
3
/OA
% \

q

%)
3 2%
4
5

SRLVE,
@ THE UNIVERSITY of EDINBURGH

4 informatics

A* algorithm: goal

* Find the shortest path from a source node to goal node, while also
considering movement cost
* Unlike BFS and Dijkstra, focusing on path to goal
* Unlike BFS, considering movement cost

* It prioritises smaller movement cost (like Dijkstra) but also using
heuristics to guide search

=> better performance if heuristic chosen well

R QNVE/"“‘Q THE UNIVERSITY of EDINBURGH

N pEd : ° °
&3 informatics
OIN®

A* algorithm: main concepts

* Very similar to Dijkstra, but:

* F =G + H used to prioritise which neighbour to choose next
* G = exact cost (like in Dijkstra) from the source to a node
* H = heuristic estimated cost (must be implemented separately) from a node to the goal

* Prioritising lowest F when choosing next node to explore

* Dijkstra is special case of A* where heuristic returns O for all nodes

WRIVE,
Y~ \~. THE UNIVERSITY ofEDlNBURGH

informatics

A* algorithm: pseudocode

algorithm A-Star is

Input: A graph G, a starting node source of G, an ending node goal of G

Output: parent which traces the shortest path from goal to source

let Q be a priority queue

cost[source] :=0 //gscore

fscore[source] := heuristic(source)

Q.add_with_priority(source, 0)

for each node v in Graph.Nodes do

if v # source then

parent[v] := UNDEFINED
cost[v] := INFINITY
fscore[v] := INFINITY

SRLVE,
SN, THE UNIVERSITY of EDINBURGH

&3 informatics

A* algorithm: pseudocode (2)

while Q is not empty do

u := Q.extract_min() // will extract tuple with min fscore

if u is goal then

return calculatePath(parent, goal) //same shown earlier

if u is not labelled as explored then //optimization

SRLVE,
RPN, THE UNIVERSITY of EDINBURGH

informatictreturn failure

label u as explored //optimization
for all edges from u to vin G.adjacentEdges(u) do
if vis not labelled as explored then //optimization
new_cost := cost[u] + Graph.Edges(u, v)
if new_cost < cost[v] then
parent[v] :=u
cost[v] := new_cost
fscore[v] := new_cost + heuristic(v)
Q. add_with_priority (v, fscore/v])
//Q empty but goal not reached

GRLVE,
S

Y T

5 < e

o A l

A 3

O

A* vs Dijkstra

HE UNIVERSITY of EDINBURGH

nformatic

Dijkstra’s Algorithm

F] 4] 58] 58]]] pmtemtitasia
]] e o 0 | |] 5) [
0) w4 8 8|

1])) e | | o] O 2
e min 2 s u}e e
[[] e | S 81
1 =/
EEEE
HEE ...
0 = I
FJJIIIIIIII

A* Search

A* vs Dijkstra

° A*
* Excellent: Guarantees shortest path [source] to [goal] (when varying or fixed
cost) when heuristic does not overestimate cost
* Good: More efficient than Dijkstra if heuristic chosen well
e Good: Complexity typically better than Dijkstra
e Bad: performance and efficiency depends on quality of heuristic

* Dijkstra:
* Excellent: Guarantees shortest path for all nodes when varying cost
* Bad: Can be slow and less efficient for large graphs
* Bad: [source] to [goal], even with early exit

4
B~ J"l THE UNIVERSITY of EDINBURGH
g)iiq

o
“5

&y informatics

Conclusion

* Breadth First Search: explores equally in all directions

* Dijkstra’s Algorithm: prioritizes paths with lowest cost to
explore

£ &

e A*: prioritizes paths that are lower cost as well as seem to
be leading closer to a goal

EEEEEEEEEEEEEEEEEEEEEEE

<‘\sv\llvp_ 4,
x “
s 71 %
Uy -
A | A |
A;,:l
Orne™

	Slide 1: ILP / 6
	Slide 2: This lecture
	Slide 3: Pathfinding
	Slide 4: Pathfinding is Ubiquitous
	Slide 5: Pathfinding is Ubiquitous
	Slide 6: Pathfinding is Ubiquitous
	Slide 7: Pathfinding is Ubiquitous
	Slide 8: Pathfinding is Ubiquitous
	Slide 9: Pathfinding Goal(s)
	Slide 10: Pathfinding algorithms
	Slide 11: Pathfinding algorithms
	Slide 12: Pathfinding algorithms
	Slide 13: Alternative to representing the map
	Slide 14: Which representation?
	Slide 15: Algorithms
	Slide 16: Breadth First Search: goal
	Slide 17: Breadth First Search: how it works
	Slide 18: Breadth First Search: how it works
	Slide 19: Breadth First Search: how it works
	Slide 20: Breadth First Search: how it works
	Slide 21: Breadth First Search: how it works
	Slide 22: Breadth First Search: how it works
	Slide 23: Breadth First Search: how it works
	Slide 24: Breadth First Search: how it works
	Slide 25: Breadth First Search: how it works
	Slide 26: Breadth First Search: how it works
	Slide 27: Breadth First Search: how it works
	Slide 28: Breadth First Search: how it works
	Slide 29: Breadth First Search: how it works
	Slide 30: Breadth First Search: how it works
	Slide 31: Breadth First Search: how it works
	Slide 32: Breadth First Search: pseudocode
	Slide 33: Getting path to goal
	Slide 34: Breadth First Search: early exit
	Slide 35: Breadth First Search: pseudocode
	Slide 36: Dijkstra’s algorithm: goal
	Slide 37: Dijkstra’s algorithm: goal
	Slide 38: Dijkstra’s algorithm: how it works
	Slide 39: Dijkstra’s algorithm: practicalities
	Slide 40: Dijkstra’s algorithm: how it works
	Slide 41: Dijkstra’s algorithm: how it works
	Slide 42: Dijkstra’s algorithm: how it works
	Slide 43: Dijkstra’s algorithm: how it works
	Slide 44: Dijkstra’s algorithm: how it works
	Slide 45: Dijkstra’s algorithm: how it works
	Slide 46: Dijkstra’s algorithm: how it works
	Slide 47: Dijkstra’s algorithm: how it works
	Slide 48: Dijkstra’s algorithm: how it works
	Slide 49: Dijkstra’s algorithm: how it works
	Slide 50: Dijkstra’s algorithm: how it works
	Slide 51: Dijkstra’s algorithm: how it works
	Slide 52: Dijkstra’s algorithm: how it works
	Slide 53: Dijkstra’s algorithm: how it works
	Slide 54: Dijkstra’s algorithm: how it works
	Slide 55: Dijkstra’s algorithm: pseudocode (1)
	Slide 56: Dijkstra’s algorithm: pseudocode (2)
	Slide 57: Dijkstra’s algorithm: early exit, path to goal
	Slide 58: Dijkstra vs BFS
	Slide 59: Dijkstra vs BFS
	Slide 60: Dijkstra vs BFS
	Slide 61: Dijkstra vs BFS
	Slide 62: Dijkstra vs BFS
	Slide 63: Dijkstra vs BFS
	Slide 64: Dijkstra vs BFS
	Slide 65: Heuristic Search
	Slide 66: Heuristics for Grid Maps
	Slide 67: Heuristics for Grid Maps
	Slide 68: A* algorithm: goal
	Slide 69: A* algorithm: main concepts
	Slide 70: A* algorithm: pseudocode
	Slide 71: A* algorithm: pseudocode (2)
	Slide 72: A* vs Dijkstra
	Slide 73: A* vs Dijkstra
	Slide 74: Conclusion

