ILP / 6

Cristina Adriana Alexandru, PhD

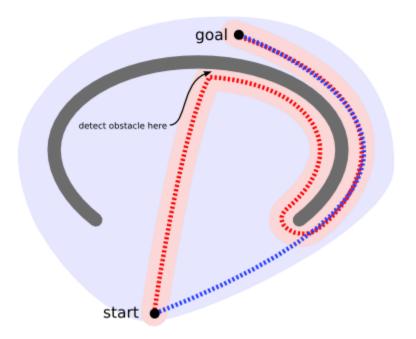
Slides adapted from: Changjian Li

This lecture

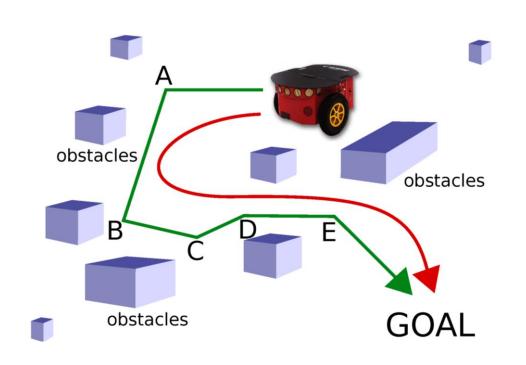
- Path finding (i.e. graph search) algorithms
 - What path finding means
 - Representing maps
 - Breadth first search algorithm
 - Dijkstra algorithm
 - A* algorithm

Pathfinding

• Find a path from one location ([source]) to ([goal])



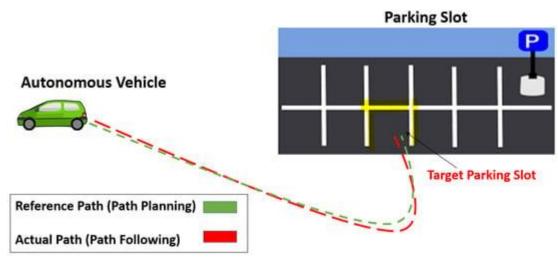
• Robotics



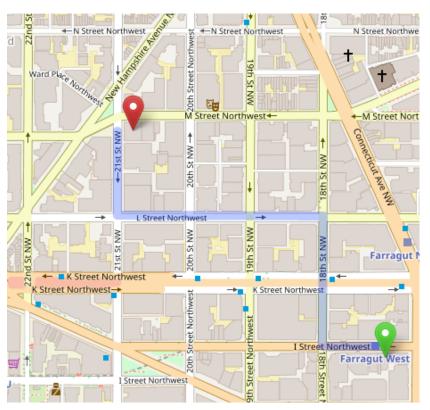
• Warehouse

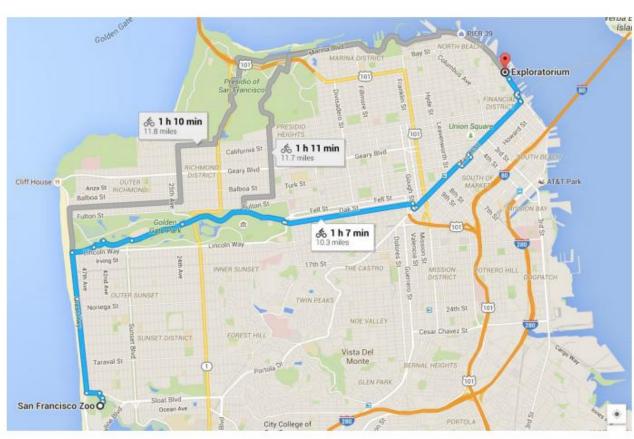
Autonomous parking



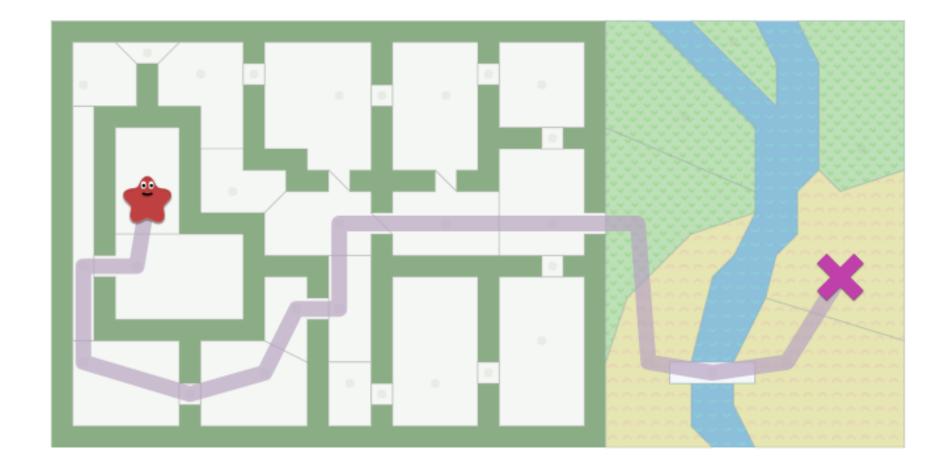


Map route search





• Games

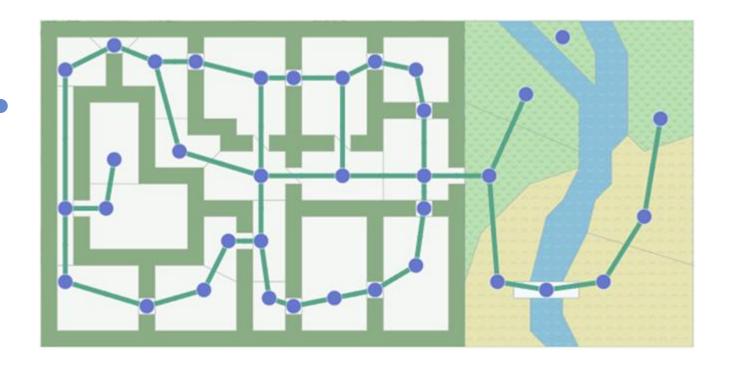


Pathfinding Goal(s)

- Shortest distance
- Least amount of travel time
- Lowest resource consumption
 - e.g., fuel, money

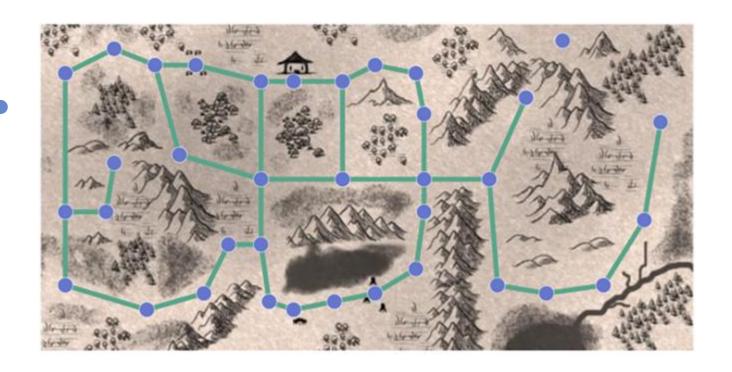
Pathfinding algorithms

- Graph search algorithms
 - Map is represented as a graph
 - Input: graph with nodes
 and edges



Pathfinding algorithms

- Graph search algorithms
 - Map is represented as a graph
 - Input: graph with nodes
 and edges

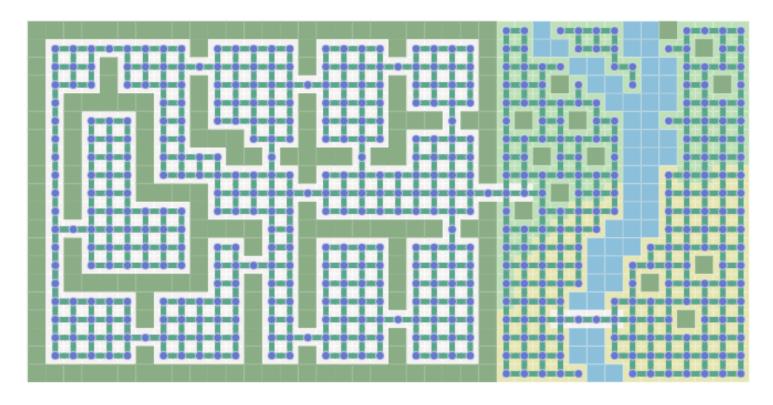


Pathfinding algorithms

- Graph search algorithms
 - Map is represented as a graph
 - Input: graph with nodes
 and edges
 - Output: nodes and edges

Alternative to representing the map

Grid (still with graph correspondent)



Which representation?

Graph search algorithm can accept any kind of graph

- In this lecture we use:
 - grid map with tiles as nodes and edges between adjacent nodes for easy visualisations
 - graph (undirected, for simplicity) for complex algorithm details
- Map is static
 - no change
 - all the obstacles are known

Algorithms

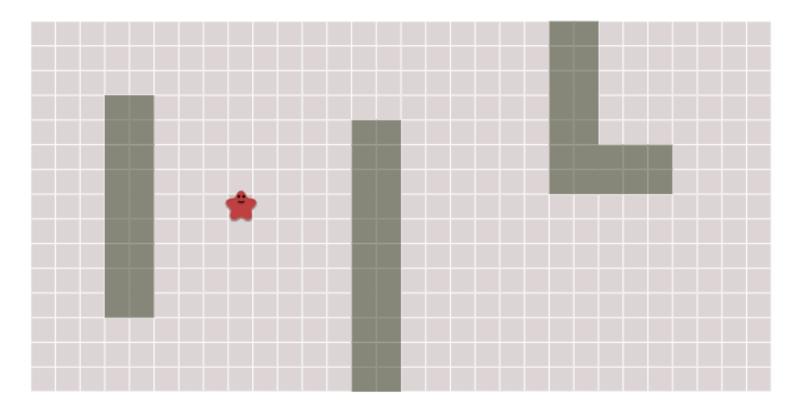
• Breadth First Search

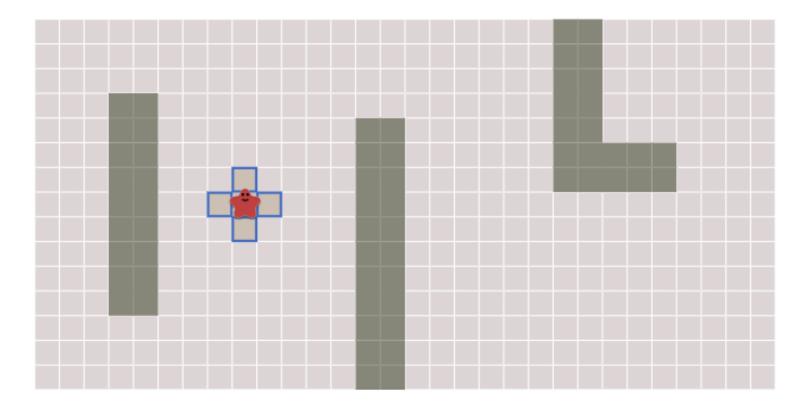
Dijkstra's Algorithm

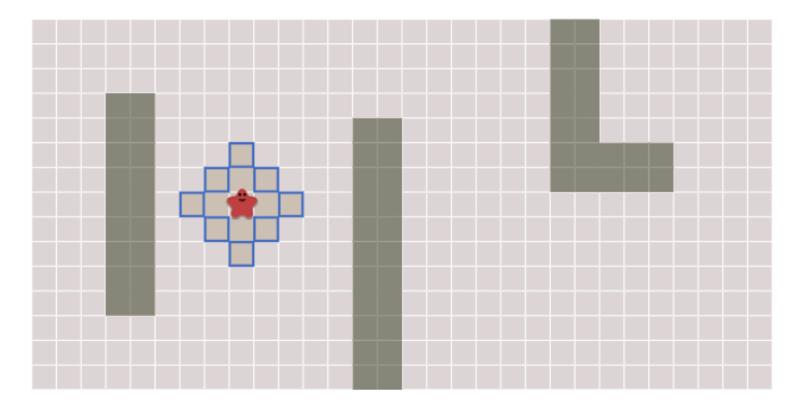
• A*

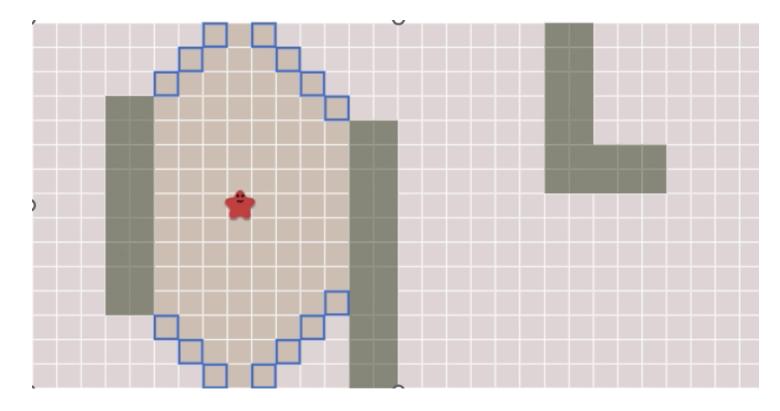
Breadth First Search: goal

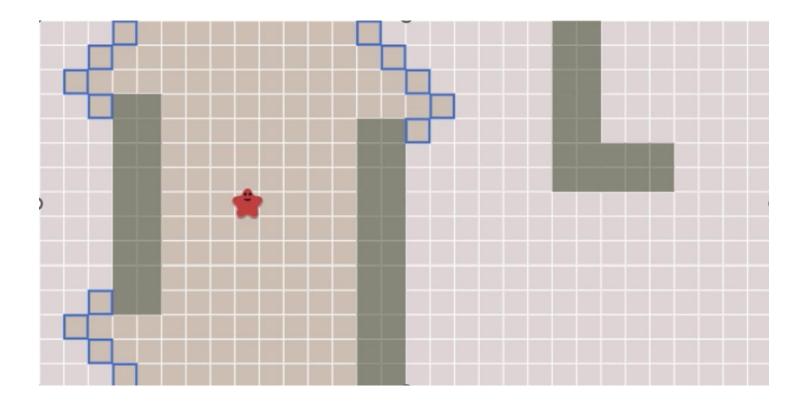
 Find the shortest path from a source node to all other reachable nodes in terms of the number of edges

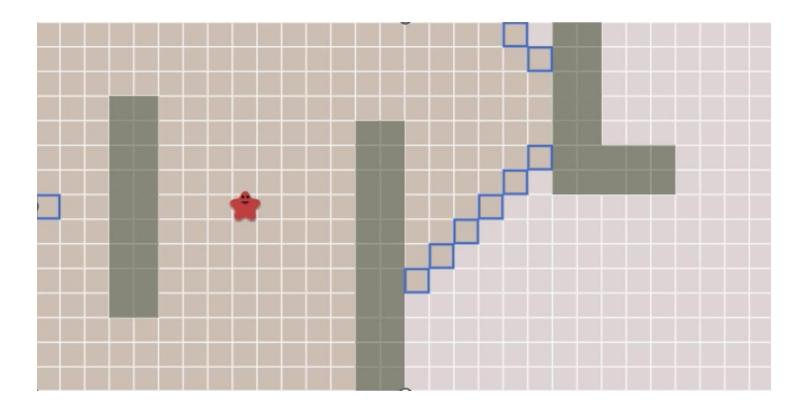


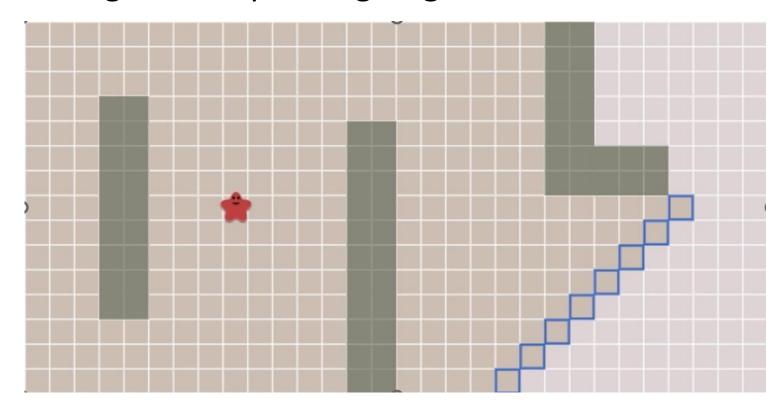


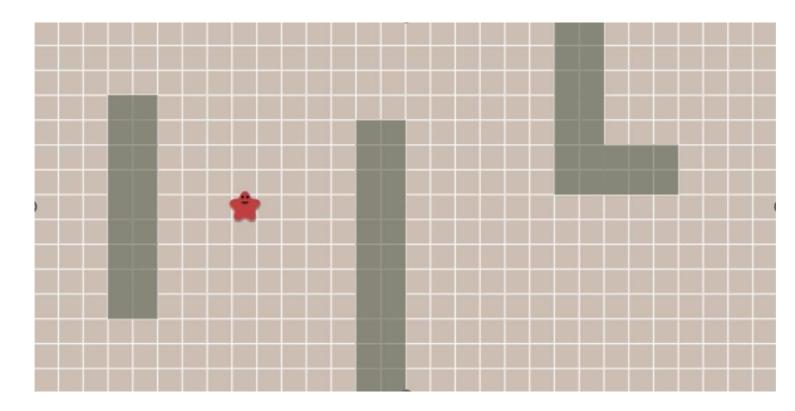


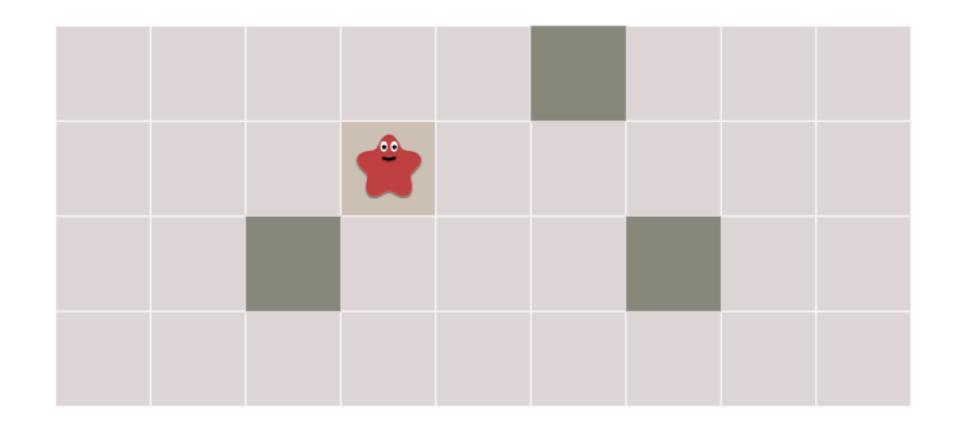


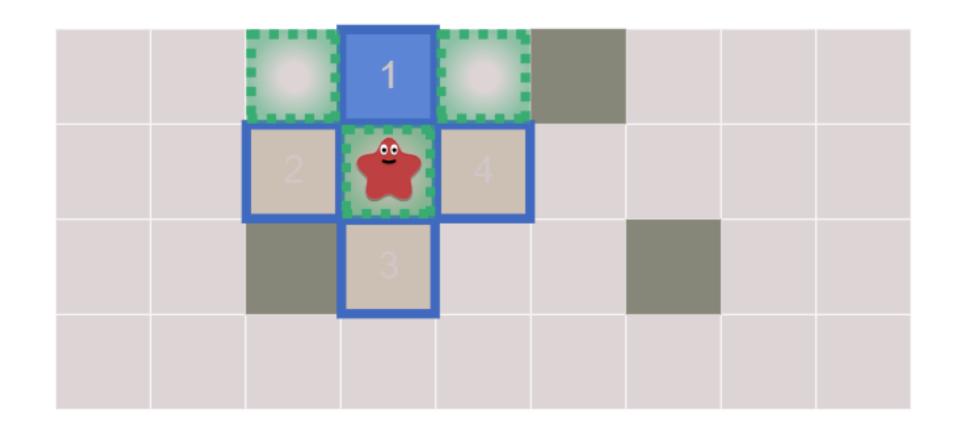


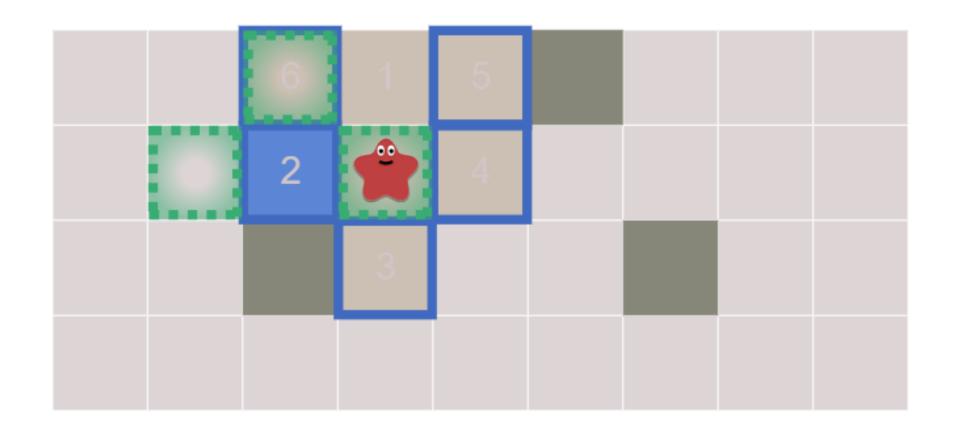


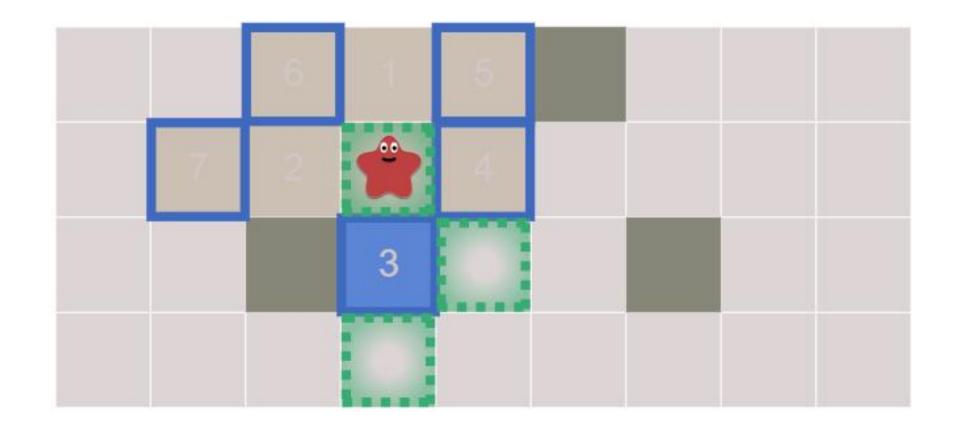


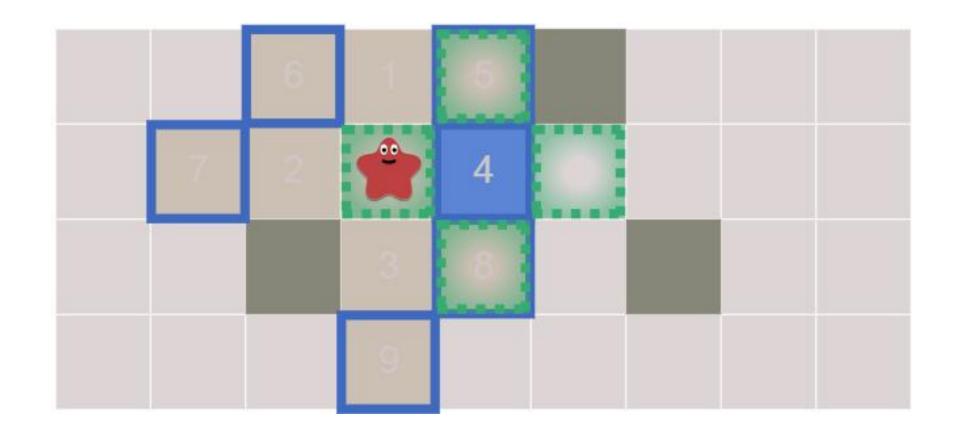


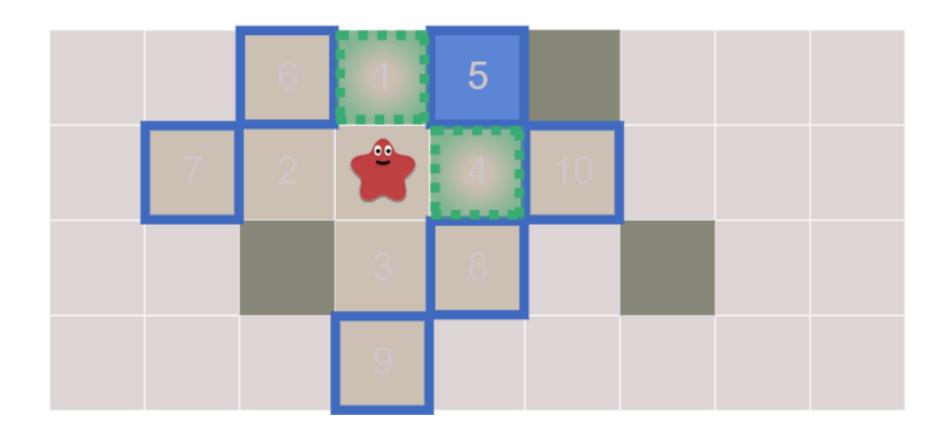


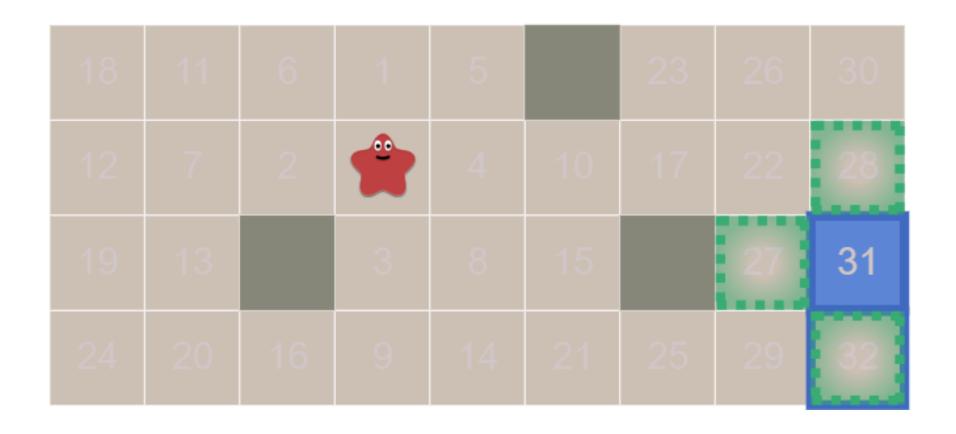












Breadth First Search: pseudocode

algorithm BFS is

Input: A graph G and a starting node source of G

Output: parent which traces the shortest path from each node back to source

Getting path to goal

```
algorithm calculatePath is
```

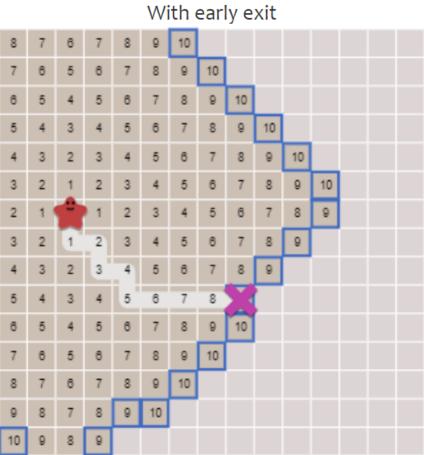
Input: parent and goal

Output: S as a sequence of nodes between goal and source

```
let S be a sequence
u := goal
while parent[u] is defined do
S.push(u)
u := parent[u]
```


Breadth First Search: early exit

Without early exit																		
	8	7	6	7	8	9	10	11	12	13	14	15	16	17	18	8	7	6
	7	6	5	6	7	8	9	10	11	12	13	14	15	16	17	7	6	
	6	5	4	5	6	7	8	9	10	11	12	13	14	15	16	6	5	4
	5	4	3	4	5	6	7	8	9	10	11	12	13	14	15	5	4	-
	4	3	2	3	4	5	6	7	8	9	10	11	12	13	14	4	3	2
	3	2	1	2	3	4	5	6	7	8	9	10	11	12	13	3	2	
	2	1		1	2	3	4	5	6	7	8	9	10	11	12	2	1	Í
	3	2	1	2	3	4	5	6	7	8	9	10	11	12	13	3	2	C
	4	3	2	3	4	5	6	7	8	9	10	11	12	13	14	4	3	2
	5	4	3	4	5	6	7	8	×	10	11	12	13	14	15	5	4	4
	6	5	4	5	6	7	8	9	10	11	12	13	14	15	16	6	5	4
	7	6	5	6	7	8	9	10	11	12	13	14	15	16	17	7	6	
	8	7	6	7	8	9	10	11	12	13	14	15	16	17	18	8	7	(
	9	8	7	8	9	10	11	12	13	14	15	16	17	18	19	9	8	1
	10	9	8	9	10	11	12	13	14	15	16	17	18	19	20	10	9	1



Breadth First Search: pseudocode

algorithm BFS is

Input: A graph G, a starting node source of G and a goal node goal

Output: parent which traces the shortest path from each node back to source

let Q be a queue

label source as explored

Q.enqueue(source)

while Q is not empty do

v := Q.dequeue()

if v is goal then

break

for all edges from v to w in G.adjacentEdges(v) do

if w is not labelled as explored then

label w as explored

w.parent := v

Q.enqueue(w)

Dijkstra's algorithm: goal

- Find the shortest path from a source node to all other reachable nodes, while also considering movement cost (difference to BFS)
 - Movement cost can be distance, travel time, resource consumption (e.g. fuel, money, etc.)
- Dijkstra cannot work with negative movement cost
- It prioritises smaller movement cost

Dijkstra's algorithm: goal

Movement costs 1

5	4	5	6	7	8	9	10	11	12
4	3	4	5	6	7	8	9	10	11
3	2	3	4	5	6	7	8	9	10
2	1	2	3	4	5	6	7	8	9
1		1	2	3	4	5	6	7	8
2	1	2	3	4	5	6	7	8	×
3	2	3	4	5	6	7	8	9	10
4				6	7	8	9	10	11
5				7	8	9	10	11	12
6	7	8	9	8	9	10	11	12	13

Movement costs 5 on grass

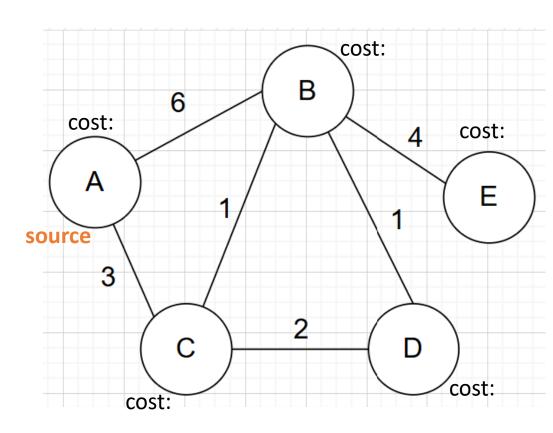
5	4	5	6	7	8	9	10	11	12
4	3	4	5	10	13	10	11	12	13
3	2	3	4	9	14	15	12	13	14
2	1	2	7	12	17	20	17	14	15
1		5	10	15	20	25	20	15	16
2	1	2	7	12	17	22	21	16	×
3	2	3	4	9	14	19	16	17	18
4				14	19	18	15	16	17
5				15	16	13	14	15	16
6	7	8	9	10	11	12	13	14	15

- 1. Mark the non-visited node with smallest cost (initially source) as visited
- 2. Find all its unvisited neighbors
- 3. Calculate the cost of reaching them
- 4. Sort based on cost
- 5. Repeat 1-4 until all nodes visited

Dijkstra's algorithm: practicalities

- Movement costs can be considered as (positive) weights on weighted graph
- Min priority queue makes algorithm more efficient
 - Stores nodes-cost tuples with their cost priority
 - Node-cost tuple with min cost always head of queue
 - In Java, dedicated PriorityQueue type

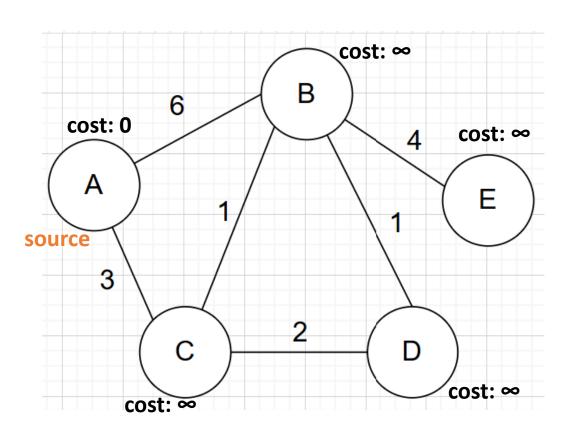
https://docs.oracle.com/javase/8/docs/api/java/util/PriorityQueue.html



A B C D E

Q (min priority queue):

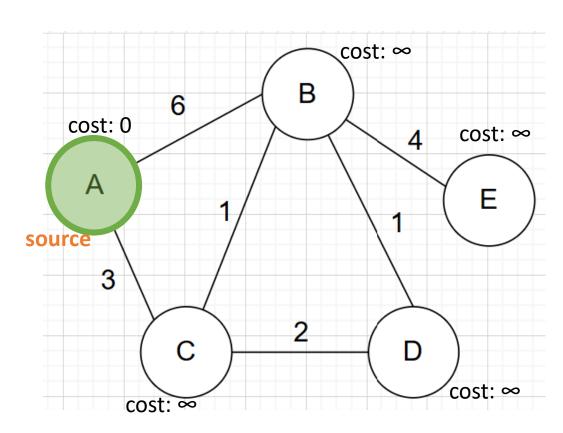
parent:



A B C D E

parent:

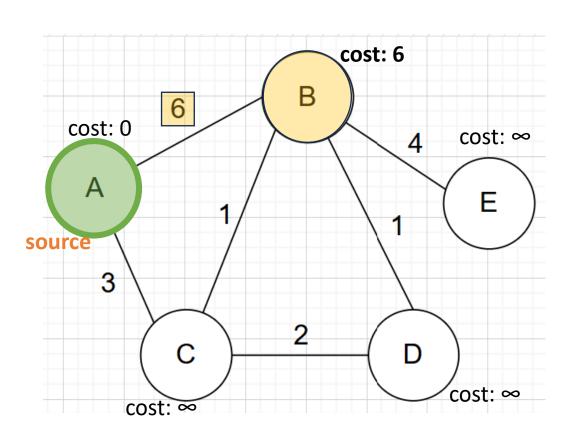
Q (min priority queue): (A, 0)



A B C D E

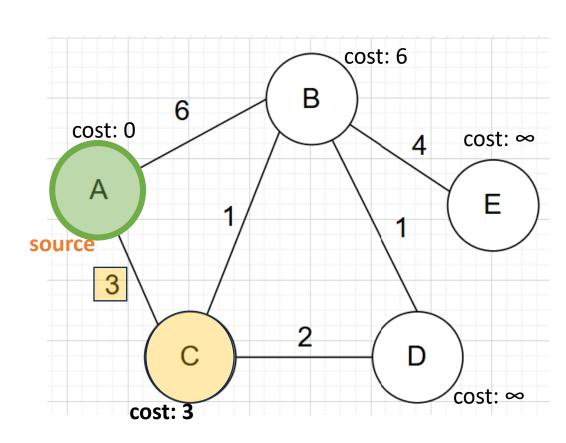
Q (min priority queue): (A, 0)

parent:



A B C D E parent: A

Q (min priority queue): (A, 0)
(B, 6)

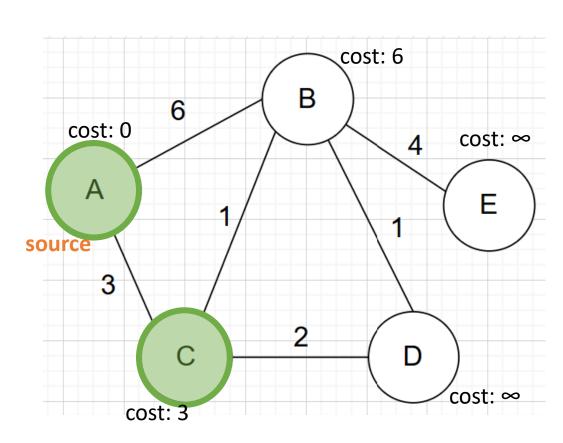


A B C D E parent: A A

Q (min priority queue):

(A, 0)

(C, 3)

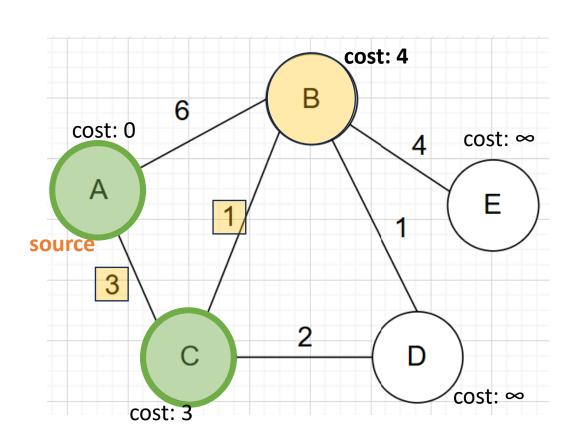


A B C D E parent: A A

Q (min priority queue):

(A, 0)

(C, 3)



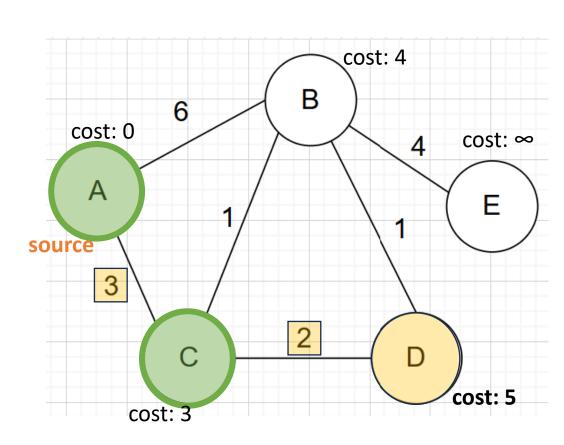
A B C D E parent: **C** A

Q (min priority queue):

(A, 0)

(C, 3)

(B, 4)



A B C D E parent: C A C

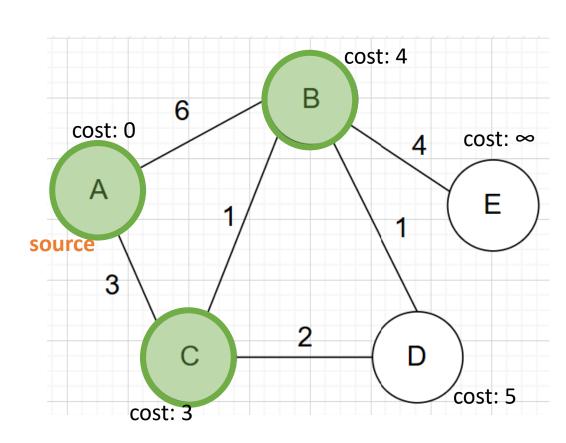
Q (min priority queue):

(A, 0)

(C, 3)

(B, 4)

(D, 5)



A B C D E parent: C A C

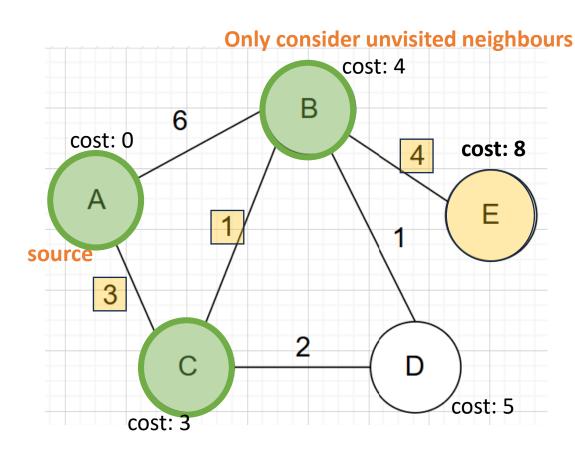
Q (min priority queue):

(A, 0)

(C, 3)

(B, 4)

(D, 5)



A B C D E parent: C A C B

Q (min priority queue):

(A, 0)

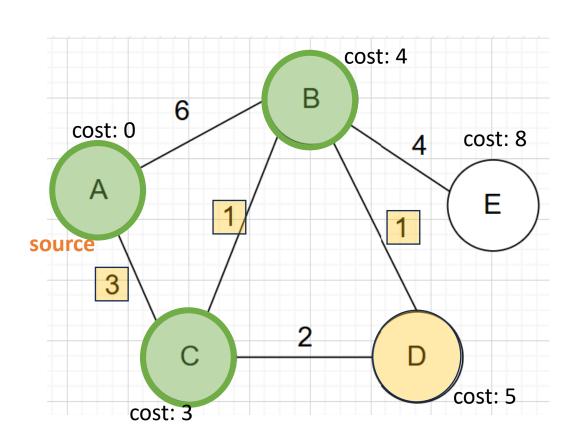
(C, 3)

(B, 4)

(D, 5)

(B, 6)

(E, 8)



A B C D E parent: C A C B

Q (min priority queue):

(A, 0)

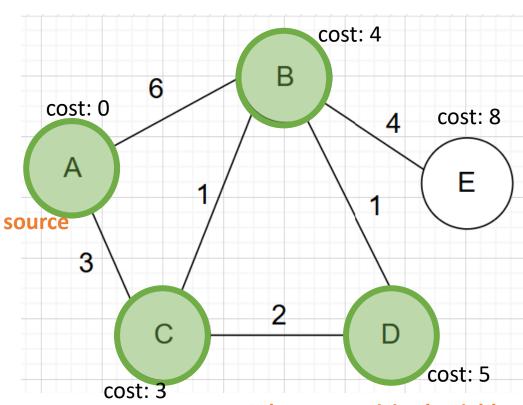
(C, 3)

(B, 4)

(D, 5)

(B, 6)

(E, 8)



A B C D E parent: C A C B

Q (min priority queue):

(A, 0)

(C, 3)

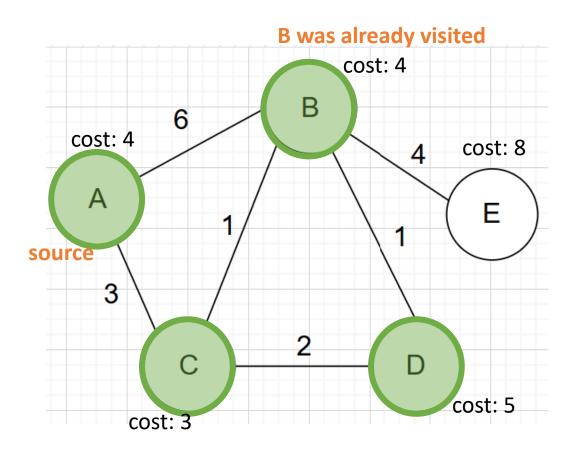
(B, 4)

(D, 5)

(B, 6)

(E, 8)

D has no unvisited neighbours



A B C D E parent: C A C B

Q (min priority queue):

(A, 0)

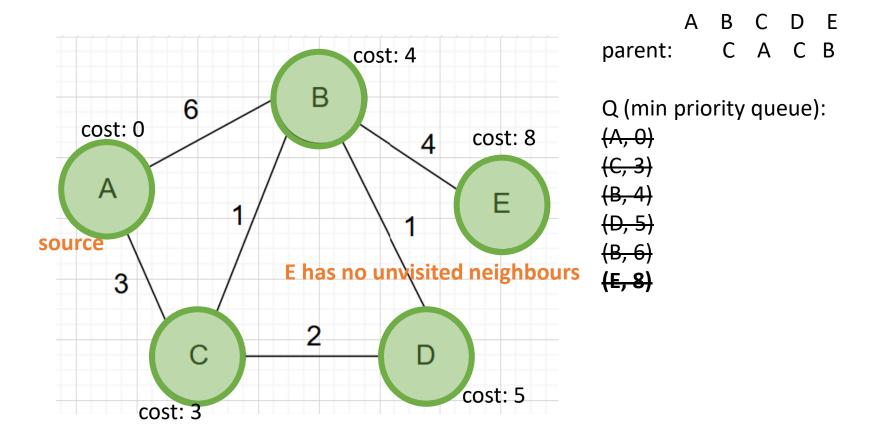
(C, 3)

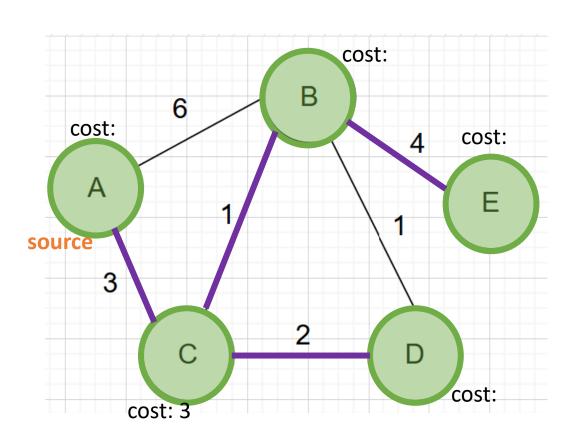
(B, 4)

(D, 5)

(B, 6)

(E, 8)





A B C D E parent: C A C B

Q (min priority queue): empty

Shortest paths from source A to each goal:

- to B: A- C- B
- to C: A- C
- to D: A- C- D
- to E: A- C- B- E

Dijkstra's algorithm: pseudocode (1)

algorithm Dijkstra is

Input: A graph *G*, a starting node *source* of *G*

Output: parent which traces the shortest path from each node back to source

```
let Q be a priority queue
cost[source] := 0
Q.add_with_priority(source, 0)
```

```
for each node v in Graph.Nodes do

if v \neq source then

parent[v] := UNDEFINED
```

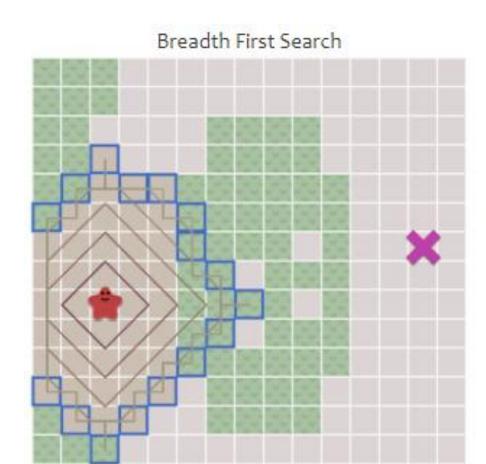
cost[v] := INFINITY

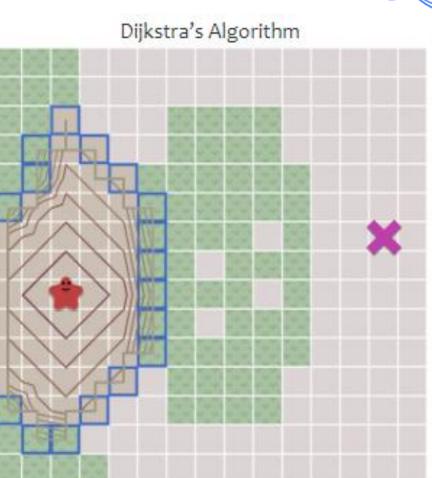
Dijkstra's algorithm: pseudocode (2)

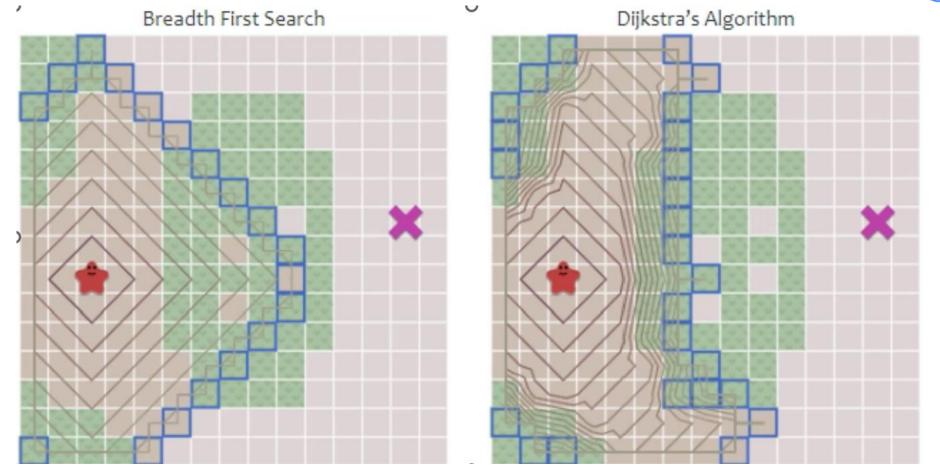

```
while Q is not empty do
         u := Q.extract min()
         if u is not labelled as explored then
                                                       //optimization
                  label u as explored
                                                       //optimization
                  for all edges from u to v in G.adjacentEdges(u) do
                           if v is not labelled as explored then
                                                                         //optimization
                                     new\_cost := cost[u] + Graph.Edges(u, v)
                                    if new_cost < cost[v] then</pre>
                                             parent[v] := u
                                             cost[v] := new_cost
                                              Q. add_with_priority (v, new_cost)
```

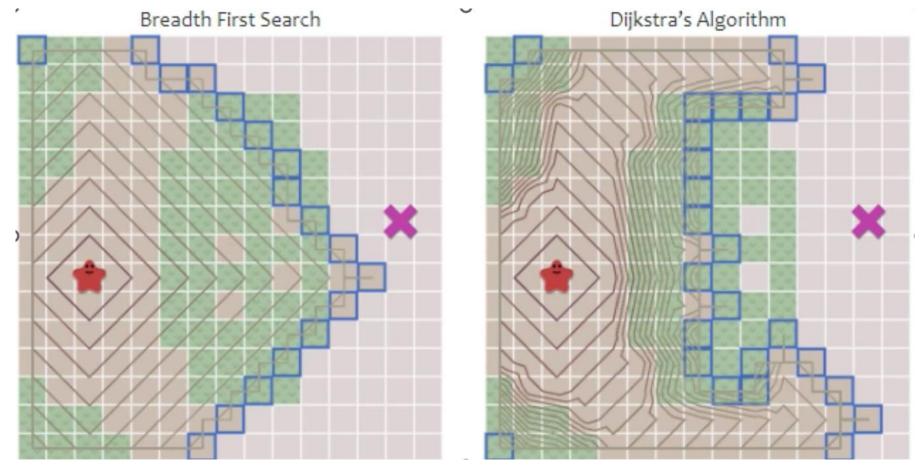

Dijkstra's algorithm: early exit, path to goal

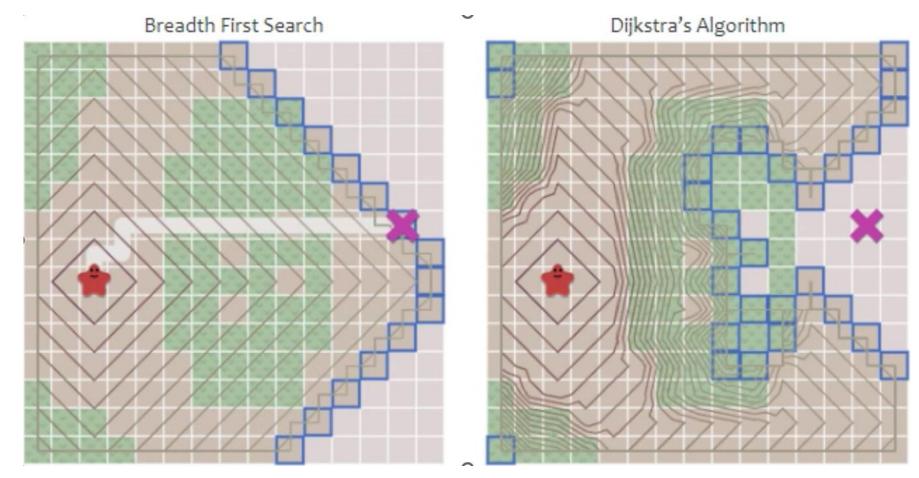
- Like BFS, Dijkstra calculates shortest path from source to all nodes, using up entire map
 - To more efficiently calculate path to a goal, can apply early exit like in BFS
- Can use same additional algorithm presented for BFS to get path to goal

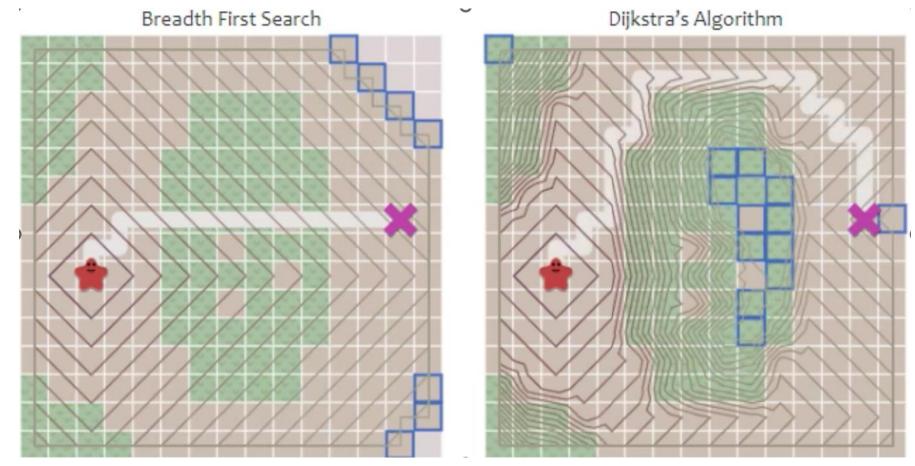


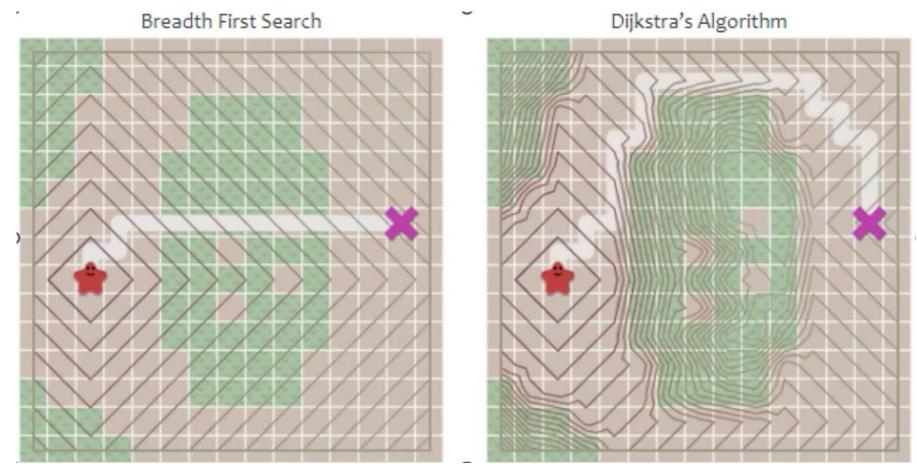








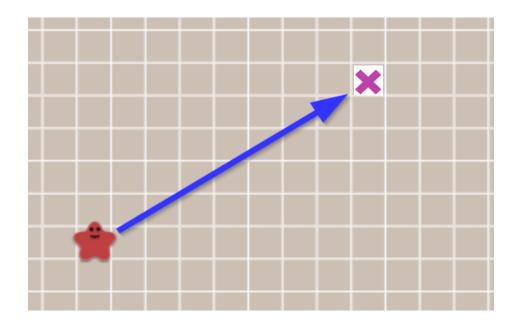




- Dijkstra
 - Excellent: finding the shortest path given varying cost
- BFS
 - Better: finding the shortest path given equal cost (faster)
 - Bad: finding the shortest path when varying cost (does not consider cost)
- Both
 - Good: [source] to all other locations
 - Bad: [source] to [goal], even with early exit

Heuristic Search

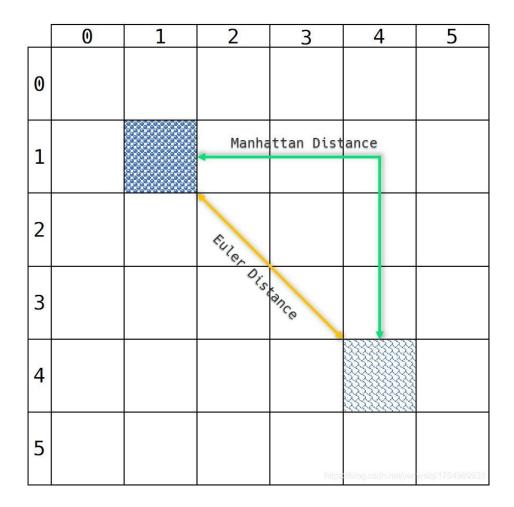
Expand towards the goal



Heuristics for Grid Maps

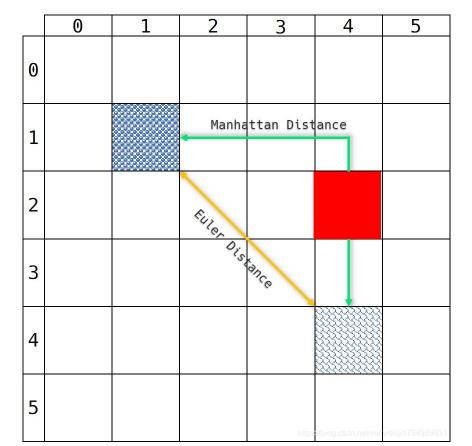
- How close to the goal
 - Manhattan distance
 - Euler Distance

•



Heuristics for Grid Maps

- How close to the goal
 - Estimation
 - There may be obstacles



A* algorithm: goal

- Find the shortest path from a source node to goal node, while also considering movement cost
 - Unlike BFS and Dijkstra, focusing on path to goal
 - Unlike BFS, considering movement cost
- It prioritises smaller movement cost (like Dijkstra) but also *using* heuristics to guide search
 - => better performance if heuristic chosen well

A* algorithm: main concepts

- Very similar to Dijkstra, but:
 - F = G + H used to prioritise which neighbour to choose next
 - G = exact cost (like in Dijkstra) from the source to a node
 - H = heuristic estimated cost (must be implemented separately) from a node to the goal
 - Prioritising lowest F when choosing next node to explore
- Dijkstra is special case of A* where heuristic returns 0 for all nodes

A* algorithm: pseudocode

algorithm A-Star is

Input: A graph G, a starting node source of G, an ending node goal of G

Output: parent which traces the shortest path from goal to source

```
let Q be a priority queue

cost[source] := 0  //gscore

fscore[source] := heuristic(source)

Q.add_with_priority(source, 0)

for each node v in Graph.Nodes do

if v ≠ source then

parent[v] := UNDEFINED

cost[v] := INFINITY
```

Differences to Dijkstra are highlighted

A* algorithm: pseudocode (2)

while Q is not empty do

```
u := Q.extract_min()  // will extract tuple with min fscore
```

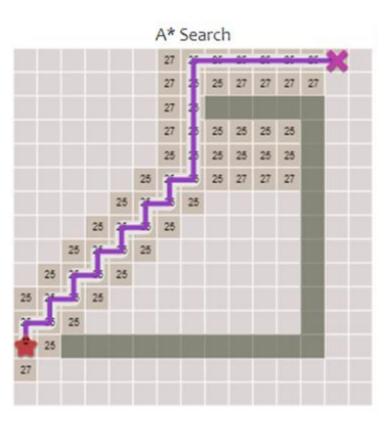
if u is goal then

```
return calculatePath(parent, goal)
                                                  //same shown earlier
if u is not labelled as explored then
                                         //optimization
                                                            Differences to Dijkstra are highlighted
          label u as explored
                                         //optimization
          for all edges from u to v in G.adjacentEdges(u) do
                    if v is not labelled as explored then
                                                             //optimization
                              new cost := cost[u] + Graph.Edges(u, v)
                              if new_cost < cost[v] then</pre>
                                        parent[v] := u
                                        cost[v] := new cost
                                        fscore[v] := new_cost + heuristic(v)
```

Q. add with priority (v, fscore[v])

A* vs Dijkstra

				m	rith	go	s Al	tra	jks	Di				
8	M	-01	-00	-00	-04	-00	r	18	17	16	15	14	13	12
4 3	24	23	22	21	20	19		17	18	15	14	13	12	11
5	25						H	18	15	14	13	12	11	10
4 3	24		20	19	18	17	Þ	15	14	13	12	11	10	9
3 3	23		19	18	17	18	b	14	13	12	11	10	9	8
2 4	22		18	17	18	15	J	۳	12	11	10	9	8	7
1 3	21		17	18	15	14	13	¥	r.	10	9	8	7	6
3	20		18	15	14	13	12	11	J.	r.	8	7	6	5
3	19		15	14	13	12	11	10	9	J	'n	6	5	4
3	18		14	13	12	11	10	9	8	7	9	í.	4	3
7 3	17		13	12	11	10	9	8	7	8	5	J	ř.	2
3 1	16		12	11	10	9	8	7	6	5	4	3	9	r
5 1	15												1	À
4 3	14	13	12	11	10	9	8	7	8	5	4	3	2	1
5 1	15	14	13	12	11	10	9	8	7	8	5	4	3	2



A* vs Dijkstra

• A*

- Excellent: Guarantees shortest path [source] to [goal] (when varying or fixed cost) when heuristic does not overestimate cost
- Good: More efficient than Dijkstra if heuristic chosen well
- Good: Complexity typically better than Dijkstra
- Bad: performance and efficiency depends on quality of heuristic

• Dijkstra:

- Excellent: Guarantees shortest path for all nodes when varying cost
- Bad: Can be slow and less efficient for large graphs
- Bad: [source] to [goal], even with early exit

Conclusion

• Breadth First Search: explores equally in all directions

 Dijkstra's Algorithm: prioritizes paths with lowest cost to explore

 A*: prioritizes paths that are lower cost as well as seem to be leading closer to a goal

